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Combining Functions and the POLYGON Plot to Create Unavailable Graphs 
Including Sankey and Sunburst Charts  

Jeffrey Meyers, Regeneron Pharmaceuticals, Basking Ridge NJ  

ABSTRACT 

SAS currently has an expansive array of plot types available within the SG procedures and Graph 
Template Language, but there are still charts that are too complex to create using conventional means.  
Fortunately, SAS has a powerful trick up its sleeve to allow the ambitious programmer to design these 
charts: the polygon plot.  A polygon plot allows the programmer to use geometric, trigonometric, and other 
equations to manually produce x and y coordinates that form the perimeter around a shape with the 
option to fill in the shape with color.  This paper will walk through utilizing the polygon plot to create 
circular, twisting, and other complex graphs including as the Sankey diagram and sunburst chart.   

INTRODUCTION 

The SG procedures and Graph Template Language (GTL) are an ever-improving utility within the SAS 
software but is still missing several common graph types.  The missing functionality typically revolves 
around circular plots and rectangles that change width at each end.  A macro1 that I previously presented 
at PharmaSUG generates CIRCOS plots by combining the POLYGONPLOT statement in GTL with 
trigonometric equations.  This paper will use the same techniques to demonstrate how other unavailable 
graph types can also be created with the primary focus being on Sankey diagrams and sunburst charts 

Figure 1 is an example CIRCOS plot 

 

Figure 1. The CIRCOS plot shows how many patients are moving to and from different groups at 
two different time-points.  The paper1 describes the methods created to produce shapes not 
available by default with SAS graphics. 
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THE POLYGON PLOT STRATEGY 

The strategy centers around combining the POLYGON plot and mathematics equations to plot shapes 
that SAS either does not have statements for currently or to have more control over the widths of a shape 
that SAS can currently create.   

THE POLYGON PLOT 

The POLYGON plot is a straightforward tool that only requires three variables: a x-coordinate, a y-
coordinate, and an ID variable to distinguish between shapes.  Lines will connect from each set of 
coordinates until the last point which will automatically connect to the first point.  The following is an 
example data set to create a square: 

Table 1 is a sample data set to input into a POLYGONPLOT statement. 

X Y ID 

0 0 1 

1 0 1 

1 1 1 

0 1 1 

Table 1. The X and Y variables contain the x and y coordinates, respectively.  The ID variable 
can separate the coordinates into different shapes.  The above set of coordinates and ID 
variables would create a square.  

Figure 2 is the graph created by table 1. 

Figure 2. The square is drawn at the coordinates in the data set described by table 1. 

The POLYGON plot is best suited for making straight line shapes but is also capable of creating curves 
with enough points.  The more points generated the smoother the curve becomes, but this also adds file 
size and processing time when generating the plot.   

Figure 3 is an example of drawing a curve by adding more points.1 

FIGURE 3. The more points that are used to draw the arc the smoother the curve 
becomes.   
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The SUBPIXEL option was added to assist with this leading to needing less points to create a smooth 
curve by smoothening out lines and curves drawn with several plot statements including SERIES and 
POLYGON. 

APPLYING EQUATIONS 

Creating the x and y-coordinates per an equation is done within a data step combined with DO loops.  
The starting point and ending point for the shape needs to be determined first as these will be the start 
and end of the do loop.  The following example creates a pie slice around the origin (x=0 and y=0). 

Pie Slice Example 

A pie slice has two primary components: an arc and an origin that the arc revolves around.  The slice is 
completed when the start and end of the arc connect back to the origin and the shape is filled in.  SAS 
currently does not have a polar axis to easily make an arc, but trigonometric equations can be used to 
generate the points around an arc: 

𝑥 = 𝑥𝑜 + 𝑑 × 𝑐𝑜𝑠⁡(𝜃) 
𝑦 = 𝑦𝑜 + 𝑑 × 𝑠𝑖𝑛⁡(𝜃) 

Xo and Yo refer to the origin, d refers to the distance from the origin to the x and y-coordinate, and theta is 
the angle that the arc covers from start to finish.  When theta is equal to zero a straight line is drawn, and 
when theta is equal to 360 degrees (two pi radians) a full circle is drawn.  The following example will draw 
a pie slice that is 90 degrees about the origin (x=0 and y=0) with a distance of one: 

Data arc;  

  ID=1; 

  D=1; /**Distance of 1**/ 

  X_O=0; /**X-coordinate of origin**/ 

  Y_O=0; /**Y-coordinate of origin**/ 

  /**Output x/y-coordinates at origin**/  

  X=0;Y=0;OUTPUT; 

  /**Run DO loop from start to end of arc**/ 

  DO theta = 0 to 90 by 5;  

    X = X_O + D * COS((theta/360)*2*CONSTANT(“PI”)); 

    Y = Y_O + D * SIN((theta/360)*2*CONSTANT(“PI”)); 

    OUTPUT; 

  end; 

run; 

 

PROC SGPLOT data=arc noautolegend; 

    POLYGON X=X Y=Y ID=ID / FILL; 

    SCATTER X=X Y=Y; 

    REFLINE 0 / AXIS=X; 

    REFLINE 0 / AXIS=Y; 

    XAXIS DISPLAY=NONE MAX=1.1 MIN=-1.1; 

    YAXIS DISPLAY=NONE MAX=1.1 MIN=-1.1; 

RUN; 

 

The distance of the arc, origin and number of points can all be adjusted in the previous example.  The 
following is the resulting figure: 
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Figure 4 is a 90 degree arc drawn around the origin 

 

FIGURE 4. The arc is drawn with 18 coordinates and the origin.  The origin is not added 
twice to the data set as the last point will automatically connect to the first.   

Notice in the prior example that setting up the graph window is also key to be able to properly see the 
shape. 

IN SUMMARY 

The strategy of finding the right equation to make the necessary shapes, mapping out the coordinates 
within a data step, generating the shape with POLYGON plot, and properly aligning the graph window can 
create nearly any graph.  The following are specific examples of these methods creating graph types not 
normally available to SAS. 

CREATING A SANKEY DIAGRAM 

The Sankey diagram is a tool that specializes in showing the flow of patients from one group into another 
through different time-points, decisions, nodes, or other key points.  Examples where Sankey plots are 
useful are longitudinal categorical data such adverse event data and quality of life (QOL) questionnaire 
data.  The time-points are essentially stacked bar charts proportionally sized to the number of patients in 
each group.  Between each time-point are curves showing the number of patients moving from one group 
to another.  What makes these curves tricky to properly make is that the width of the curves is 
proportional to both the starting group and the ending group meaning the width of the curve is not 
constant from start to end.  This prevents the use of simple plot statements such as SERIES from 
properly creating the curves. 

RANDOMLY GENERATED DATA SET FOR EXAMPLES 

The data set used to generate the diagram in figure five is randomly generated data using the following 
data step code: 

data random; 

    call streaminit(123); 

    do id = 1 to 100; 

        do cycle=1 to 5; 

            u = rand("Uniform"); 

            group = 1+floor(5*u);     

            output; 

        end; 

    end;   
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    drop u:; 

    label cycle='Cycle' group='Group Number'; 

run; 

This data set represents patients moving between levels of a group variable over several cycles.  The 
group levels mimic variables such as tumor response values or quality of life questionnaire responses.   

Figure 5 shows an example Sankey diagram with randomly generated data. 

 

FIGURE 5. The bar chart segments represent the population distribution at each cycle 
and the width of the connecting curves represents the proportion of patients moving 
from one group to the next. 

COMPONENTS OF A SANKEY DIAGRAM 

There are two main components of a Sankey Diagram: the stacked bar charts and the connecting curves.  
Other components can be added on to annotate the diagram such as counts within the segments of the 
bar charts or at the end of the curves. 

Stacked Bar Charts 

The stacked bar chart component of the diagram appears simple at first as SAS has a straightforward 
graphing statement in VBAR.  However, there are two primary reasons that POLYGON plots are more 
useful when generating the Sankey diagram: 

1. When drawing the connecting lines it is necessary to know the exact x and y-coordinates of each 
segment of the bar chart to avoid overlapping the bar chart and connecting curve.  This is more 
important when transparency is used with the shapes.  Sankey diagrams also can have a buffer 
space between the bar chart and the connecting curve where knowing the exact coordinates makes 
this much easier. 

2. Some Sankey diagrams add space between the categories of the bar chart, and this is much easier 
to do when individually drawing each segment on its own.   

The shape of each bar chart segment is a rectangle which only requires four points to be plotted in the 
POLYGON plot.  These should be centered over the x-axis time-point for each node according to the 
preferred box width.  The box height is determined by the number of patients within each box (one on the 
y-axis is equal to one patient), and these numbers can be calculated by either a simple FREQ procedure 
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or SQL query.  The y-axis coordinates are then calculated by knowing the maximum y-axis value of the 
previous box to be the base and adding the current group’s patients to get the top of the rectangle: 

proc freq data=sashelp.cars noprint; 

    table origin / out=freq; 

run; 

data barchart; 

    set freq; 

    if _n_=1 then start=0; 

    id=_n_; 

    x=0.5;y=start;output; 

    x=1.5;y=start;output; 

    x=1.5;y=start+count;output; 

    x=0.5;y=start+count;output; 

    start=start+count; 

    retain start; 

run; 

 

proc sgplot data=barchart ; 

    polygon x=x y=y id=id / fill group=origin; 

    xaxis display=(nolabel) min=0 max=2 values=(1) valueshint; 

    yaxis label='Cars' min=0 max=450 values=(0 to 450 by 50) grid valueshint; 

run; 

Figure 6 is an example of drawing a bar chart using the POLYGON plot 

 

FIGURE 6. Each rectangle requires the four corners to be plotted as x/y coordinate and 
separate ID values to distinguish different shapes.  The GROUP option is used to apply 
color and legend values.  
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Figure six is drawn with a width of exactly one and the coordinates of the edges of the rectangles is easily 
known for the next steps. 

Connecting Curves 

The connecting curves show the flow of patients from one group of the stacked bar charts to another.  
Creating the curves properly is more difficult than anticipated for three main reasons: 

1. The width is proportionate to the number of patients moving compared to both the starting group and 
the ending group.  This means that the two ends of the curve can have different widths meaning 
traditional plot statements such as SERIES will not work for this purpose 

2. The width of each curve must be precise as well as the placement at each bar chart down to specific 
x/y coordinates.  Traditional plot statements have x/y coordinates, but the width of each line cannot 
be precisely controlled.  For example, a SERIES plot line thickness cannot be set to be one unit of the 
y-axis. 

3. The easiest path to connect the groups is a straight line, but Sankey diagrams typically use curved 
lines for aesthetic reasons. 

POLYGON plots solve the first two points by allowing the programmer to set precise x/y coordinates for 
where the connecting curves start and stop as well as the exact width.  The third point requires a 
mathematical equation to create the appropriate curve.  Research led to finding Bézier curves which have 
start/end points as well as one or more anchors to pull the curve in different directions.  The curves in the 
Sankey diagram have up to two inflection points which led to using a cubic Bézier curve with the following 
equation: 

𝐵(𝑡) = (1 − 𝑡)3𝑃0 + 3(1 − 𝑡)2𝑡𝑃1 + 3(1 − 𝑡)𝑡2𝑃2 + t3P3, 0 ≤ t ≤ 1 
This equation requires four anchor points P0-P3.  P0 and P3 are the start and ending points, and P1 and 
P2 are points between the start and end that pull the curve in their direction.  The equation is run on 
values of t from zero (the start of the curve) to one (the end of the curve).  The more steps taken between 
zero and one the smoother the curve will become.  The Sankey diagram requires both x and y 
coordinates, so the equation is run once for X(t) and again for Y(t) setting the four anchor points to be: 

1. P0 is the starting x/y coordinates for the curve 

2. P3 is the ending x/y coordinates for the curve  

3. P1 is one-third of the distance between the start and end for the x-coordinate and is equal to the 
starting y-coordinate 

4. P2 is two-thirds of the distance between the start and end for the x-coordinate and is equal to the 
ending y-coordinate 

Figure 7 is an example of drawing two cubic Bézier curves with four anchor points 

  

FIGURE 7. The blue curve uses the y1_0-y1_3 points and the red curve uses the y2_0-
y2_3 points.  Both curves use the x_0-x_3 points.   
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The middle two anchor-points can be adjusted but for the purpose of this macro the one-third and two-
thirds distance was found to produce an aesthetically pleasing shape.  This curve must be repeated twice 
at two different heights to produce a curved rectangle shape.  The starting and ending x-coordinates will 
be the same in both curves and the y-coordinates will have two different start/end points depending on 
which side of the rectangle is being drawn. In order to take the two Bézier curves in figure 7 and correctly 
convert them into a rectangle the points must be drawn in the correct order.  If drawn in the incorrect 
order the polygon will appear to be folded or bent. 

Figure 8 shows the correct order to plot the points within the POLYGON plot. 

 

FIGURE 8. The perimeter of the polygon must be followed with the x-y coordinates.  The 
top curve should follow the Bézier curve equation from zero to 1 for t, but the bottom 
curve must be plotted in the opposite direction. 

The following code shows the data step to output the coordinates for the polygon in figure 7: 

data bezier; 

    starting_x=1; 

    ending_x=2; 

    start_y1=1; 

    start_y2=0.5; 

    end_y1=0.25; 

    end_y2=0; 

    id=1; 

    /**Bezier Curve 1: From Left group to Right Group **/ 

    do t = 0 to 1 by 1/20; 

        x=((1-t)**3)*starting_x+ 

            3*((1-t)**2)*t*(starting_x+(ending_x-starting_x)/3)+ 

            3*(1-t)*(t**2)*(starting_x+2*(ending_x-starting_x)/3)+ 

            (t**3)*ending_x; 

        y=((1-t)**3)*start_y1+3*((1-t)**2)*t*start_y1+ 

            3*(1-t)*(t**2)*end_y1+(t**3)*end_y1; 

        output; 

    end; 

    /**Bezier Curve 2: From Right Group back to Left Group**/ 
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    do t = 0 to 1 by 1/20; 

        x=((1-t)**3)*ending_x+ 

            3*((1-t)**2)*t*(starting_x+2*(ending_x-starting_x)/3)+ 

            3*(1-t)*(t**2)*(starting_x+(ending_x-starting_x)/3)+ 

            (t**3)*starting_x; 

        y=((1-t)**3)*end_y2+3*((1-t)**2)*t*end_y2+ 

          3*(1-t)*(t**2)*start_y2+(t**3)*start_y2; 

        output; 

    end; 

run; 

The above code draws the top and bottom sides of the polygon in 20 steps each using DO loops.  The 
key to putting this method into practice is to calculate the start and stop heights for each individual curve 
and then output the coordinates with separated ID values. 

FINAL REMARKS 

The Sankey diagram can be customized with annotation such as counts per box or counts per curve, and 
the TEXT plot is the best tool to draw these.  The curves within each group will need to be sorted such 
that there is minimal overlap.   

CREATING A SUNBURST CHART 

The sunburst chart is a graph meant to display the same type of data as a Sankey diagram but in a 
format that is more conducive to following specific patient paths.  Each ring represents a different time or 
node with the innermost ring being the first time-point and the outermost being the last time-point.  Each 
ring is essentially a donut plot where categories are proportionally drawn as a curved rectangle.  Each 
sequential ring can be traced backwards to see the full path over time for a group of patients. 

Figure 9 shows an example sunburst chart with randomly generated data. 

 

FIGURE 9. The sunburst chart displays the same data as the Sankey diagram but in a 
manner that allows the tracking of specific patient paths from one group to the next. 
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CREATING A DONUT RING 

Each ring of a sunburst plot is essentially a donut plot or pie chart with the center blocked by a circle.  
Creating a donut plot requires drawing two arcs at different distances from the origin.  The distance from 
one arc to the next becomes the width of the final curved rectangle segment.  The following is a simple 
program to create the first donut ring of the sunburst plot using the randomly generated data set shown 
earlier: 

proc freq data=random noprint; 

    table group / out=freq; 

    where cycle=1; 

run; 

 

data donut; 

    set freq; 

    if _n_=1 then start=0; 

    id=_n_; 

    end=start+360*percent/100; 

    /**Draw outside perimeter**/ 

    do theta=start to end by (end-start)/10; 

        x=1*cos(theta*constant('PI')/180); 

        y=1*sin(theta*constant('PI')/180); 

        output; 

    end; 

    /**Draw inside perimeter**/ 

    do theta=end to start by -(end-start)/10; 

        x=0.75*cos(theta*constant('PI')/180); 

        y=0.75*sin(theta*constant('PI')/180); 

        output; 

    end; 

    start=start+percent*360/100; 

    retain start; 

run; 

ods graphics / reset height=4in width=4in; 

proc sgplot data=donut; 

    polygon x=x y=y id=id / fill group=group; 

    scatter x=x y=y / markerattrs=(symbol=circlefilled) group=group; 

    xaxis display=none max=1.1 min=-1.1; 

    yaxis display=none max=1.1 min=-1.1; 

run; 
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The program first finds the frequency and percentages of the GROUP variable for CYCLE one and 
outputs the values to a data set FREQ.  These percentages are converted to degrees for a circle, and the 
trigonometric equations shown earlier to create arcs are used to draw the perimeter of the curved 
rectangles.  The program changes direction to draw the inner arc to avoid twisting the rectangle.  The 
resulting graph also includes a scatter plot to show the points used to draw the polygon plot. 

Figure 8 shows the innermost ring of figure 10 

 

FIGURE 10. The scatter plot overlayed on the donut plot show the points being used to 
draw the polygon plot.  Each arc is drawn using 10 points, and the distance from the arcs 
to the center (the origin) is used to set the ring’s width. 

CREATING THE SUBSEQUENT RINGS 

The majority of creating the subsequent rings is the data preparation.  The percentages for each ring 
segment must be calculated including the previous paths.  For example, the second ring could have 20 
patients in group two, but they could be from three different groups in the prior ring and cannot be 
counted together.  Once the frequencies for each ring are calculated the same graphing process is 
performed to create the rings, but the groups are sorted so that the correct paths through the rings align.  
The actual code from the macro is the following: 

%do i = 1 %to &&nrings&b; 

    data _ring&i;     

        %if &i=1 %then %do; 

            /**If first ring then setup alone**/ 

            set _temp&b._t3 (where=(ring=1)); 

        %end; 

        %else %do; 

            /**Merge current ring with previous ring dataset**/ 

            merge _temp&b._t3 (where=(ring=&i) in=a)  

                  _ring%eval(&i-1) (keep=ring_id start  

                                    rename=(ring_id=prior_ring  
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                                            start=prior_start) in=b); 

        %end; 

        by prior_ring; 

        retain _end; 

        if first.prior_ring then do; 

            %if &i=1 %then %do; 

                start=0; 

            %end; 

            %else %do; 

                start=prior_start;/**Comes from prior ring data set**/ 

            %end; 

            end=start+percent; 

            _end=end; 

        end; 

        else do; 

            start=_end; 

            end=start+percent; 

            _end=end; 

        end; 

        drop _end; 

    run; 

%end; 

/**Put all rings together**/ 

data _rings; 

    set %do i = 1 %to &&nrings&b; _ring&i %end;; 

run; 

The dataset _temp&b._t3 has pre-calculated the percentages for each group of each ring.  Once the 
starting point from the prior ring’s group is collected it is simple addition to find the end points of each 
group.   

ANNOTATING EACH RECTANGLE WITH COUNTS 

Knowing the starting points, ending points and the width of each rectangle allows the calculation of the 
center for adding in the counts via a text plot.  The text can either be displayed rotated or unrotated 
depending on preference.  The rotation for each number to face the center of the circle is given by the 
following equation: 

𝑅 = tan−1 (
𝑌

𝑋
) ∗

360

2𝜋
 

 

The arctangent function in SAS returns the angle in radians and must be converted to degrees.  The 
resulting value is then added to the TEXT plot in the ROTATE option. 
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FINAL REMARKS 

The color of the outline is very important when differentiating between the groups and giving a buffer.  
When giving space between groups the size of the outline is easier to manipulate than calculating out 
space to add to the start/stop of groups.  When creating POLYGON plots the OUTLINE portion of the plot 
tends to be drawn more jagged than using a SERIES plot instead.  The numbers are added with a TEXT 
plot centered in each group. 

ADDITIONAL PLOT EXAMPLES 

EXPLODED PIE CHART 

The pie chart is a common and well-known graph that SAS already has several methods of creating.  
There is a variation of this graph unavailable in SAS called the “exploded” pie chart that is used when 
several of the categories are too small to distinguish in the pie.  The exploded portion is shown as a 
second pie within the graph including all groups under a certain threshold and these groups are combined 
into an “Other” category in the first pie. 

Figure 11 shows an example of a regular pie chart vs an exploded pie chart 

    

FIGURE 11. The pie charts are generated from the SASHELP.CARS data set and are 
showing the distribution of the types of vehicles.  The Hybrid category is very small and 
hard to see in the left figure.  The right figure “explodes” the smaller categories making 
them easier to see. 

There are more practical applications of the exploded pie chart when there are more small categories in 
figure 11 but the methods are the same. 

Creating a Pie Chart 

Creating a pie chart using the POLYGON plot statement is simply creating proportional pie slices such as 
the example in figure three and is a simpler version of the donut chart from figure eight.  The percentages 
for each group represent to the proportion of 360 degrees each pie slice encompasses.  The easiest 
location to draw a pie chart in linear axes is around the origin (x=0, y=0) using trigonometric functions 
where the distance of the arc from the origin becomes the radius of the circle.  Nearly the same code to 
make the donut plot can be used to make a pie chart: 

proc freq data=random noprint; 

    table group / out=freq; 

    where cycle=1; 

run; 
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data pie; 

    set freq; 

    if _n_=1 then start=0; 

    id=_n_; 

    end=start+360*percent/100; 

    /**Mark Origin**/ 

    x=0;y=0;output; 

    /**Draw arc**/ 

    do theta=start to end by (end-start)/10; 

        x=1*cos(theta*constant('PI')/180); 

        y=1*sin(theta*constant('PI')/180); 

        output; 

    end; 

    start=start+percent*360/100; 

    retain start; 

run; 

ods graphics / reset height=4in width=4in; 

proc sgplot data=pie; 

    polygon x=x y=y id=id / fill group=group; 

    scatter x=x y=y / markerattrs=(symbol=circlefilled) group=group; 

    xaxis display=none max=1.1 min=-1.1; 

    yaxis display=none max=1.1 min=-1.1; 

run; 

Figure 12 shows the resulting pie chart 

 

FIGURE 12. The pie chart is the same as the donut plot without cutting out the hole in the 
center. 
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Creating Multiple Pie Charts in The Same Graph 

The limitation of SAS’s built-in pie chart functionality is there are no axes and other plot types cannot be 
overlayed into the graph.  When building a pie chart with the POLYGON plot on a linear access an 
unlimited number of pie charts and other graph types can be overlayed together.  The same equation for 
the arcs is used but the origin points are moved to avoid the pie charts overlapping.  The equations 
referenced the origin point as X0 and Y0 which for the example that generated figure 12 are both set to 0 
to simplify the equation.  The following example creates two bar charts where the second one is 
translated 2.1 units to the right: 

proc freq data=random noprint; 

    table cycle*group /  

        out=freq (drop=percent rename=(pct_row=percent)) outpct; 

    where cycle in(1 2); 

run; 

data pie; 

    set freq; 

    by cycle; 

    if first.cycle then do; 

        start=0; 

        x_text=(cycle-1)*2.1;y_text=1.1;text=catx(' ','Cycle',cycle); 

    end; 

    id=_n_;end=start+360*percent/100; 

    /**Mark Origin**/ 

    x=(cycle-1)*2.1;y=0;output;call missing(x_text,y_text,text); 

    /**Draw arc**/ 

    do theta=start to end by (end-start)/10; 

        x=(cycle-1)*2.1+(1/cycle)*cos(theta*constant('PI')/180); 

        y=(1/cycle)*sin(theta*constant('PI')/180);output; 

    end; 

    start=start+percent*360/100; 

    retain start; 

run; 

ods graphics / reset height=4in width=8in; 

proc sgplot data=pie; 

    polygon x=x y=y id=id / fill group=group; 

    scatter x=x y=y / markerattrs=(symbol=circlefilled) group=group; 

    text x=x_text y=y_text text=text / position=center textattrs=(size=10pt); 

    xaxis display=none max=3.1 min=-1.1; 

    yaxis display=none max=1.1 min=-1.1; 

run; 
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Figure 13 shows the two side-by-side pie charts 

 

FIGURE 13. The left pie chart is centered on the origin (x=0, y=0) and the right pie chart is 
centered on x=2.1, y=0.  Changing the distance of the arcs changes the radius of the 
circle. 

Closing Remarks 

The remaining steps for the exploded pie chart are annotation.  The numbers can be added with TEXT 
plots after calculating the center point for each pie slice.  The lines connecting the two pie charts together 
can run from the min/max of the combined pie slice to the top/bottom of the second pie chart.  Different 
textures can be added to the pie charts with the DATASKIN option.  A simple macro that created figure 11 
will be included with the paper. 

EXPLODED CIRCOS DIAGRAM 

The CIRCOS plot shown at the beginning of this paper is complicated to read with paths entering and 
exiting each section.  One way to simplify the figure is to “explode” it and only feature paths going one 
direction. 

Figure 14 shows patients moving from one group to another   

 

FIGURE 14. The left side is the original group and the right side is the new group.  The 
paths change colors halfway through so that the groups patients are leaving to on the 
left and the groups patients are coming from on the right can be identified without having 
to trace the line. 
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The Anatomy of the CIRCOS Diagram 

The details of creating a CIRCOS diagram are demonstrated in a prior paper1 and is displayed in figure 
one of this paper. The two primary components of the CIRCOS diagram are the proportionally sized 
outside rectangles representing populations and the curves that connect the populations showing the flow 
from one group to another.  The connecting curves are sized proportionally to both the starting group and 
the ending group and change widths from start to finish.  The color of the connecting curve can reflect the 
starting group or the ending group. 

Creating the CIRCOS Diagram Components 

Breaking the CIRCOS diagram down into simple components leads to need to build the outside 
rectangles and the connecting curves.  The outside rectangles are created with the same methods used 
to make the doughnut rings in the prior sunburst example of this paper.  The connecting curves use the 
same methods as the Sankey example within this paper, but instead of using cubic Bezier curves the 
quadratic version is used: 

𝐵(𝑡) = (1 − 𝑡)𝑃0 + 2(1 − 𝑡)𝑡𝑃1 + t2P2, 0 ≤ t ≤ 1 
Where the variables represent the following: 

1. P0 is the starting x/y coordinates for the curve 

2. P2 is the ending x/y coordinates for the curve  

3. P1 is the midpoint x/y coordinate between the start and the end of the curve 

The code creating the CIRCOS graph strategically picks the midpoint to be the coordinate X=0 and Y=0 
to remove the P1 point from the equation.  Normally a CIRCOS plot is created around a singular circle 
around this midpoint, but an “exploded” CIRCOS plot variant is created using two circles pulled apart: 

Figure 15 shows the graph space for creating the exploded CIRCOS diagram 

 

FIGURE 15. Two circles pulled apart from the midpoint by 0.5 in both directions are used 
for the starting and ending points 

Figure 15 demonstrates the use of two circles pulled apart to create the starting and ending points (P0 
and P2 respectively).  The midpoint for the Bezier curves is still set to be the coordinate X=0 and Y=0 to 
simplify the equation.  The data step code for the Bezier curves contains the following: 
    id=catx('-','CR',before,after); 

    group=after; 

    /**Draw left edge of Bezier Curve**/ 
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    do t=before_end to before_start by (before_start-before_end)/5; 

        x=0.9*cos(t)-0.5;y=0.9*sin(t);output; 

    end; 

    /**Draw bottom edge of Bezier Curve**/ 

    do t = 0 to 0.5 by 1/50; 

        x=(1-t)**2*bx1 + t**2*ax1; 

        y=(1-t)**2*by1 + t**2*ay1; 

        output; 

    end; 

    /**Draw top edge of Bezier Curve**/ 

    do t = 0.5 to 0 by -1/50; 

        x=(1-t)**2*bx2 + t**2*ax2; 

        y=(1-t)**2*by2 + t**2*ay2; 

        output; 

    end; 

The above code outputs the first half of the Bezier curve by plotting t from zero to 0.5 in the quadratic 
equation.  There is a section for the endcap of the curve and sections for the bottom and top edges of the 
curve.  These must be done in the appropriate order or else the Bezier curve will fold on itself.  The 
starting corner coordinates are represented by bx1, by1, bx2, and by2.  The ending corner coordinates 
are represented by ax1, ay1, ax2, and ay2.  The second half of the Bezier curve is drawn by plotting t 
from 0.5 to 1: 

         id=catx('-','CR2',before,after); 

    group=before; 

    /**Draw bottom edge of Bezier Curve**/ 

    do t = 0.5 to 1 by 1/50; 

        x=(1-t)**2*bx1 + t**2*ax1; 

        y=(1-t)**2*by1 + t**2*ay1; 

        output; 

    end; 

    /**Draw right edge of Bezier Curve**/ 

    do t=after_start(after) to after_end by (after_end-after_start(after))/5; 

        x=0.9*cos(t)+0.5;y=0.9*sin(t);output; 

    end; 

    /**Draw top edge of Bezier Curve**/ 

    do t = 1 to 0.5 by -1/50; 

        x=(1-t)**2*bx2 + t**2*ax2; 

        y=(1-t)**2*by2 + t**2*ay2; 

        output; 

    end; 
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The ID variable determines the color of each section of the Bezier curve.  By assigning different values 
(the before and after group values) the sections of the Bezier curve can match the rectangles on the 
outside of the figure to indicate where the curve is going and where it is coming from. 

Figure 16 shows the Bezier curves overlayed over the two circles 

 

FIGURE 16. The connecting curves are pulled towards the X=0 and Y=0 coordinate. 

This example also shows the connecting curves changing color halfway through the length.  This is done 
by assigning the after group to the first half of the Bezier curve and the before group to the second half of 
the Bezier curve for color mapping. 

Closing Remarks 

The exploded CIRCOS diagram is another example of creating an unavailable graph using the right plot 
space setup, the right function, and the polygon plot.  This example also demonstrated some flexibility in 
the polygon plot by separating the curve made by the polygon plat in half to show two different colors. 

CONCLUSION 

The SAS graphics team is constantly adding in new functionality as new versions are released, but the 
graph types that do not exist in the software currently can still be created with math equations and the 
POLYGON plot. The method was originally explained within a prior paper1 describing how to create a 
CIRCOS diagram. Multiple examples utilizing these methods were displayed within this paper.  These 
methods are not the most efficient and require more storage space compared to regular plot statements 
but using the methods to create new graphs can also inspire SAS to continue updating their catalogue. 
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