PharmaSUG 2024 - Paper DV - 246

AutoVis Oncology Presenter: Automated Python-Driven Statistical Analysis

and Visualizations for Powerful Presentations
Indraneel Narisetty, Jazz Pharmaceuticals

ABSTRACT

In late-phase or first-in-human clinical studies, understanding clinical data is vital for informed decision
making, such as selecting the appropriate drug dose and evaluating its efficacy and safety. The traditional
process of converting ADaM datasets into TLFs (tables, listings, and figures) and integrating them into
clinical PowerPoint presentations has historically been a time-consuming task. Medical monitors and
clinical teams create these presentations to conclude on dose selection, escalation, and drug
effectiveness. Addressing this need, we've introduced "AutoVis Oncology Presenter," an innovative
Python-based tool designed to streamline the transformation of Oncology clinical trials data into clear,
impactful PowerPoint presentations. It's particularly adept at handling key ADaM datasets like ADTTE and
ADRS, which are crucial for assessing treatment effectiveness. This paper will demonstrate how to build
this tool, complete with Python code and practical examples. The goal of AutoVis is to make important
safety and efficacy data both comprehensible and visually appealing using Python packages. It
automates the generation of detailed tables and striking graphs, such as spider plots showing patient
responses, waterfall plots, and swimmer plots, all neatly incorporated into PowerPoint presentations.
Moreover, it helps in comparing CSR (Clinical Study Report) tables when they are generated, thereby
enhancing the efficiency and clarity of presentations. This feature is particularly beneficial for clinical
teams who need to regularly share their findings, be it in meetings, conferences, or reports. AutoVis
accelerates the sharing of vital information, thereby advancing our understanding and treatment of
cancer.

INTRODUCTION

Imagine diving into the world of data analysis for oncology clinical trials in an attempt to make sense of
complex information. A clear and effective presentation of these data is crucial for informed decisions that
could impact patients' lives. However, traditional methods of creating visualizations and integrating them
into presentations every month, every quarter, or at every review meeting are tedious and time
consuming. With AutoVis, the code is simply submitted using a terminal, and the presentation will be
ready for you in seconds.

This is where the AutoVis Oncology Presenter comes in. It is a game changer —a Python-based tool
designed to simplify the process of turning ADaM data into stunning visualizations and seamlessly adding
them to PowerPoint presentations.

It harnesses the power of Python libraries, such as Pandas, Matplotlib, Pyreadstat, python-pptx, to create
beautiful graphs and charts with just a few simple commands. These visuals not only look great, but also
help to understand the effectiveness of the data.

This paper aims to demonstrate how Python can transform the way clinical trial data is analyzed and
presented. Through practical examples, | will illustrate how AutoVis can save time, decrease errors, and
enhance the impact of presentations. By providing you with the ability to visually represent data, we hope
to empower you to make informed decisions and contribute to research advancements.

PYTHON PACKAGES USED

e To develop the AutoVis Oncology Presenter, we relied on a diverse set of Python packages, each
contributing unigque functionalities to the tool's capabilities. Below is an overview of the packages
utilized in this project:

e To develop the AutoVis Oncology Presenter, we relied on a diverse set of Python packages, each
contributing unique functionalities to the tool's capabilities. Below is an overview of the packages
utilized in this project:

e Pandas: A fundamental library for data manipulation and analysis that serves as the backbone of our
data processing pipeline.

e Os: Facilitates file and directory operations, enabling seamless interaction between data files and
presentation assets.

e Pyreadstat: This enables reading and writing data in SPSS, SAS, and Stata formats, ensuring
compatibility with common data sources in clinical trials.

e NumPy: Provides essential functionality for array manipulation, mathematical operations, and
statistical analysis, enhancing the robustness and efficiency of data-processing tasks.

e Python-pptx: This allows for the creation and manipulation of PowerPoint presentations
programmatically, enabling dynamic generation of slides, text, shapes, images, and tables.

¢ Plotly and plotly.express: Provides interactive and web-based visualization capabilities, enabling the
creation of interactive plots, dashboards, and web applications directly from Python.

o Kaleido: Used for static image export from Plotly figures, ensuring compatibility with static formats
such as PowerPoint presentations.

e Colorsy and auxiliary packages: Utilized for color manipulation, styling, and additional functionalities
to enhance the visual aesthetics of presentations.

PYTHON PPT FUNCTION

The primary purpose of the ppt function is to enhance the efficiency and standardization of presenting
clinical trial data. By automating the generation of PowerPoint slides, this function significantly reduces
the manual effort involved in preparing presentations, enabling you and your team to concentrate more on
analyzing and interpreting the data. The ppt function generates PowerPoint slides from Python Dataframe
data, thereby facilitating the integration of clinical trial results into the presentation format. It requires three
parameters: result_df, which represents the dataframe containing the pertinent data; title, which specifies
the title of the slides; and file_path, which indicates the file path where the presentation will be saved.

In [7]: def ppt(result_df,title, file path):

Load the existing presentation

if os.path.exists(file_path):
Load the existing presentation
presentation = Presentation(file_path)

else:
Create a new presentation with a default theme
presentation = Presentation(file_path_temp)

Calculate the maximum number of rows and columns that can fit on a slide
max_rows = 15
max_cols = 5

Calculate the number of slides needed
total_rows, num_cols = result_df.shape
num_slides = (total_rows // max_rows) + 1

Create slides for the DataFrame
for slide_num in range(num slides):
Determine the rows to include on the current slide
start_row = slide_num * max_rows
end_row = min((slide_num + 1) * max_rows, total_rows)
num_rows = end_row - start_row

Check if the last row has only one non-null value, indicating a row with missing values
if num_rows > 1 and result_df.iloc[end_row - 1].count() == 1:
end row -= 1 # Exclude the Last row from the current slide

Create a slide for the current subset of rows
slide_layout = presentation.slide_layouts[14]
slide = presentation.slides.add_slide(slide_layout)

Set the slide title

title_text = title

title_placeholder = slide.shapes.title
title_placeholder.text = title_text

Set the font properties of the title
font = title_placeholder.text_frame.paragraphs[e].runs[6].font
font.name = “Arial Narrow"

font.size = pPt(20)

Align the title to the Left
title_placeholder.text_frame.text = title_text
title_placeholder.text_frame.paragraphs[@].alignment = PP_ALIGN.LEFT

Define the table dimensions based on the number of rows and columns
left = Inches(1)

top = Inches(2)

width = Inches(25)

height = Inches(@.5 * (num_rows + 1))

Add a table shape to the slide
table = slide.shapes.add_table(num_rows + 1, num_cols, left, top, width, height).table

total width = 25 # Total width available for the table in inches (adjust as needed)
first_column_width = 8 # Width for the first column in inches (adjust as needed)

if num_cols > 1:
remaining width = total width - first_column_width
remaining_columns_width = remaining width / (num_cols - 1) # width for remaining columns
column_widths = [first_column_width] + [remaining_columns_width] * (num_cols - 1)
else:
column_widths = [first_column_width]

for i, column_width in enumerate(column_widths):
if i < len(table.columns):
table.columns[i].width = Inches(column_width)

Set the column headers
for i, column in enumerate(result_df.columns):
cell = table.cell(e, i)
cell.text = column
for paragraph in cell.text frame.paragraphs:
for run in paragraph.runs:
run.font.size = Pt(20) # Decrease the font size for column headers

populate the table with DatarFrame values
for i, row in enumerate(result_df.iloc[start_row:end_row].itertuples(index=False), start=1):
for j, value in enumerate(row):
cell = table.cell(i, j)
cell.text = str(value)
Reduce the font size if the content exceeds the cell size
if i > e:
if len(cell.text_frame.paragraphs) > © and len(cell.text frame.paragraphs[@].runs) > @:
font = cell.text_frame.paragraphs[e].runs[e].font
font.size = Pt(26) if len(cell.text) > 3@ else Pt(26)

Apply the table style
table.style = "Medium Style 1 - Accent 1"

Save the updated presentation to the specified file path
presentation.save(file_path)

Display 1. Python ppt functions to display Python Dataframe in a PowerPoint presentation.
Key Features:

1. Dynamic Slide Creation: This function dynamically creates slides based on the size of the
dataframe, ensuring that data are presented comprehensively while avoiding overcrowded slides.

2. Integration with Company Template: This leverages your company's standard PowerPoint
template, preserves brand identity, and ensures consistency in presentation style across all
materials.

3. Table Formatting: The function formats tables within slides, adjusting column widths and font
sizes as required to optimize readability and visual appeal.

4. Automatic Slide Title Setting: The title of each slide is automatically set based on the specified
titte parameter, ensuring coherence and clarity in slide organization.

STREAMLINING DATA PROCESSING: FROM SAS DATASETS TO PRESENTATION

READING SAS DATASETS INTO PYTHON DATAFRAME S

A Python script was developed to facilitate the conversion of the SAS® data files into Python data frames.
The script, written in the Python programming language, utilizes the pandas, pyreadstat, and OS libraries
for data manipulation, reading SAS files, and file system operations, respectively.

The script begins by defining the folder paths in which the SAS ADaM data files are located, and specifies
the datasets of interest. The folder_path variable points to the directory containing the Analysis Data
Model (ADaM) datasets, whereas tif _data_path points to the directory containing the TLF (Tables,
Listings, and Figures) datasets. Additionally, sel_datasets and tlf_datasets lists specify the datasets to be
processed from each folder:

In [1]: import

pandas as pd

import os

import
import

pyreadstat
numpy as np

from pptx import Presentation

from pptx.util import Inches, Pt

from pptx.enum.text import PP_ALIGN
from pptx.dml.color import RGBColor
import os

from pptx.enum.shapes import MSO_SHAPE

import
import
import
import
import
import
import
import
import

re
plotly.colors as colors
plotly.graph_objs as goS
plotly.express as px

plotly.io as pio

kaleido.scopes as kaleido_scopes
plotly.graph_objs as go
itertools

colorsys

Display 2. Importing necessary python modules.

The script begins by importing the necessary Python libraries: os for file system operations, pandas for
data manipulation, and pyreadstat for reading SAS data files.

In [2]: folder path = r"C:/Users/inarisetty/Downloads/pyth/cdisc™
sel datasets = ['adsl’,'adae’, 'adrs','adevent’]
tlf data path = r"C:/Users/inarisetty/Downloads/pyth/cdisc/data/prod/tlfdata”
tlf datasets = ['t 9 82 92 ox']

Display 3. Python variables are defined.

Next, the script defines the folder paths and the datasets of interest. It also initializes the empty
dictionaries (Dataframe s and tif Dataframe s) to store the resulting data frames.

In [3]: dataframes = {}
for file name in os.listdir(folder path):
if file name.endswith(".sas7bdat"):
table name = os.path.splitext(file name)[@] # Extract table name from file name

if table name in sel datasets:
file path _ds = os.path.join(folder path, file name)
df, meta = pyreadstat.read sas7bdat(file path ds, encoding="LATIN1")
dataframes[table name] = df
dataframes[table name + " column_labels"] = meta.column_names_to labels
df df = dataframes['adsl’]
print(df.columns)

Display 4. Reading and converting SAS ADaM datasets into Python data frames.

The script iterates each file in the folder specified by folder_path. For each file ending with sas7bdat
extension, it extracts the table name from the file name and checks if it matches any of the datasets
specified in the sel_datasets. If a match is found, the script reads the SAS® data file using
pyreadstat.read_sas7bdat(), converts it into a pandas dataframe (df), and stores it in a database
dictionary. Additionally, it stores the column labels associated with the dataframe in a separate dictionary
entry with keys suffixed by _column_labels.

In [4]: tl1f dataframes = {}
for file name in os.listdir(tlf data path):
if file name.endswith(".sas7bdat"):
table name = os.path.splitext(file name)[@] # Extract table name from file name

if table name in tlf datasets:
file path ds = os.path.join(tlf data path, file name)
df, meta = pyreadstat.read sas7bdat(file path ds, encoding="LATIN1")
tlf dataframes[table name] = df
tlf dataframes[table name + " column labels"] = meta.column _names to labels

Display 5. Reading and converting SAS TLF output datasets into Python data frames.

Similarly, the script iterates each file in the TLF data-path (tif _data path). It follows the same procedure
as before to read the SAS TLF data files, but this time it checks if the table name matches any of the
datasets specified in the tif _datasets(output-ready QC dataset). If a match is found, the resulting
dataframe is stored in the tIf_Dataframe dictionary along with the corresponding column labels.

DEFINING TREATMENT VARIABLES, SELECTING COLUMNS, POPULATION FLAGS, AND
FILE LOCATIONS.
Next, we define treatment variables, selecting columns needed for tables, and specify flags for safety and
efficacy assessments.

In [4]: treatment_var = "TRTO1P"
selected cols_demog =["AGE","AGEGR1", "SEX", "RACE", "ETHNIC","WEIGHTBL","HEIGHTBL","BMIBL","BMIBLGR1"]
selected cols disp = ["SAFFL","DCREASCD"]

safety flag = "SAFFL"
efficacy flag = "ITTFL"

Display 6. Defining treatment variables, population flags, and column selection.

Next, we specify the file paths for the input and output files required to generate the presentation slides
and save the plot images.

In [6]: file path = "C:/Users/inarisetty/Downloads/pyth/cdisc/result presentation.pptx”
output _path = 'C:/Users/inarisetty/Downloads/pyth/cdisc/your plot.png’
file path temp = "C:/Users/inarisetty/Downloads/pyth/cdisc/jazz style slide.pptx”

Display 7. The locations of the paths were defined.

The file_path_temp variable refers to the company standard PowerPoint template, which serves as a
blueprint for the presentation slides generated by the tool. This template embodies a company's branding,
formatting, and stylistic preferences, ensuring consistency and professionalism across all presentations.

By specifying the company standard power-point template file, the tool can seamlessly integrate the
generated data into the existing design and layout. This ensures that the output presentation maintains
the same visual identity and adheres to established standards, which are crucial for effective
communication and conveying a unified message.

Using the company standard template also streamlines the presentation creation process by eliminating
the need to manually format slides or adjust the settings. The tool automatically applies predefined styles,
fonts, colors, and layouts from the template, saving time and effort, while ensuring a polished and
cohesive presentation.

Overall, leveraging the company’s standard PowerPoint template with all its settings ensures that the
output data are presented in a consistent and professional manner, aligning with the company's branding
guidelines and enhancing the impact and credibility of the presentation.

DEVELOPING PYTHON FUNCTIONS TO PRODUCE FREQUENCY COUNTS, SUMMARY
STATISTICS, AND COLUMN ARRANGEMENTS.

Compute Summary Stats function

The compute_summary_stats function streamlines the process of generating summary statistics from
data. First, it groups the main data frame by the treatment variable and calculates descriptive statistics
for the specified variable of interest, resulting in a summary dataframe (summary_df). Additionally, it
calculates the total number of subjects in each treatment group using ADSL data and merges this
information into the summary dataframe for clarity. The function then formats the summary data,
renames columns for readability, computes the median and range (and can include additional statistics if
needed) for each treatment group, and transposes the dataframe for better presentation. It also handles
missing data, if specified, ensuring that all relevant statistics are captured. Ultimately, the function returns
a dataframe (result_df) containing the computed summary statistics, empowering users to gain insight
into their data distribution and characteristics across different treatment groups.

In [8]: def compute_summary_stats(df,adsl_df, count_var, treatment_var):
summary_df = df.groupby([treatment_var])[count_var].describe()
count_df = adsl _df.groupby([treatment_var])['USUBIID'].nunique().reset_index(name='Total Count")
summary_df = pd.merge(count_df, summary_df , on=[treatment_var])
summary_df[treatment_var] = summary_df.apply(lambda row: f"{row[treatment var]} \n(N = {row['Total Count']})", axis=1)
summary_df = summary_df.drop(['Total Count'],axis=1)
summary_df = summary_df.set_index(treatment_var)
summary_df = summary_df.rename(columns={'min':'Min", '56%':'Median’, 'max':'Max'})
summary_df[‘Median (Range)'] = summary_df.apply(lambda x: f'{x["Median"]:.1f} ({x["Min"]:.ef}, {x["Max"]:.ef})', axis=1)

cols = ['Median (Range)']

summary df = summary_df[cols].T.reset_index()
if count_var:
if count_var in df.columns:
sf_counts = df[count_var].value_counts().to_dict()
st_row = {}
for col in summary_df.columns:
if col in sf_counts:
sf_row[col] = t"
else:
sf_row[col] = " '
summary_df = summary_df.rename(columns={"'index': 'Statistic'})
new_values = { 'Median (Range)'}
summary_df['Statistic'] = summary_df['Statistic'].replace(new_values)
result_df = summary_df

return result_df
Display 8. Python functions to generate the summary statistics.

In [12]: adsl df = df df
result_df = compute_summary_stats(df_df,adsl_df, 'AGE’, treatment_var)
print(result df)

Display 9. Example call of the compute_summary_stats function.

TRTO1P Statistic Placebo \n(N = 86) Xanomeline High Dose \n(N = 84) \
0 Median (Range) 76.0 (52, 89) 76.0 (56, 88)

TRTOLP Xanomeline Low Dose \n(N = 84)
2] 77.5 (51, 88)

Output 1. Output from a compute_summary_stats Function

Compute Percentage Count function

The compute_percentage_count function simplifies the computation of percentage counts from the data,
such as the frequency counts in SAS®. However, it extends this functionality by providing percentages
and leveraging the treatment column for grouping. By grouping the main data frame according to the
treatment variable and specified count variable(s), the unique subject count within each group was
calculated. Concurrently, it computes the total subject count per treatment group using the demographic
dataframe and merges these counts to facilitate subsequent calculations. Depending on the specified
parameters, the function calculates the percentage of subjects within each group and formats the counts.

In [12]: def compute percentage count(df, adsl df, count var, treatment var, dec=1, perc="Y',bign="Y'):
count_var = [count_var] if isinstance(count_var, str) else count_var
un_count_df = df.groupby([treatment_var] + count_var)['USUBJID'].nunique().reset_index(name='Count"')
count_df = adsl df.groupby([treatment var])['USUBIID'].nunique().reset index(name='Total Count"')
merged_df = pd.merge(count_df, un_count_df, on=[treatment_var])

if perc == 'Y':
if bign == 'Y':
merged_df[treatment_var] = merged_df.apply(lambda row: f"{row[treatment_var]} \n(N = {row['Total Count’']})", axis=1)
merged_df["Percentage’] = merged_df['Count’] / merged df['Total Count’] * 100
merged_df[Count_1'] = merged_df.apply(lambda row: f"{row['Count']} ({row['Percentage']:.{dec}f}¥%)", axis=1)
else:
merged_df['Count 1'] = merged df['Count']

char_stats = merged_df.pivot(index=count_var, columns=treatment_var, values="Count_1').fillna('@")
char_stats = char_stats.rename_axis(index=count_var).reset_index()

return char_stats.copy()

Display 10. Python functions to generate the frequency count statistics.

In [14]: char_stats = compute percentage count(df df,adsl df, 'SEx’, treatment var)
print(char_stats)

Display 11. Example call of compute_percentage_count function.

TRT@1P SEX Placebo \n(N = 86) Xanomeline High Dose \n(N = 84) \
8 F 53 (61.6%) 40 (47.6%)
1 M 33 (38.4%) 44 (52.4%)

TRT@1P Xanomeline Low Dose \n(N = 84)
) 5@ (59.5%)
1 34 (40.5%)

Output 2. Output from compute_percentage_count Function

Column order function

This function, col_order, helps arrange the columns in the dataframe based on the specified treatment
values. It looks at both your main dataframe and the ADSL dataframe that contains treatment data. First,
it finds unique treatment values and sorts them according to their numeric order. It then goes through
each treatment value, finds matching columns in the dataframe, and assigns a numerical order to each
treatment value. After sorting the columns according to the treatment variable, the dataframe was
updated with the newly organized columns. Overall, col_order makes it easier to analyze the data by
ensuring a consistent column order based on treatment values.

In [15]: def col_order(df, adsl df, treatment_var):
cols_to_sort = adsl_df[[treatment_var, treatment_var+"N"]].drop_duplicates()
cols_to_sort = cols_to_sort.sort_values(treatment_var+"N")[treatment_var].tolist()
merged cols = []
for col in cols to sort:
matching cols = [c for c in df.columns if col in c]
if matching_cols:
col_num = adsl_df.loc[adsl_df[treatment_var] == col, treatment_var+"nN"].iloc[@]
merged_cols.extend([(c, col_num) for c in matching_cols])

Get remaining columns from final_df and add them to merged cols
for col in df.columns:
if col not in [c[@] for ¢ in merged_cols]:
merged_cols.append((col, None))

Sort merged cols by treatment_var

merged_cols = sorted(merged_cols, key=lambda x: x[1] if x[1] is not None else -1)
Extract column names from merged cols

sorted cols = [c[@] for c in merged cols if c[@] in df.columns]

df = df.reindex(columns=sorted_cols)

return df

Display 11. Python function to order the treatment columns based on numeric treatment column.

COMBINING ALL THE PREVIOUSLY DISCUSSED FUNCTIONS INTO A SINGLE COHESIVE
SOLUTION.

The generate_table function integrates various functionalities to process and summarize data. It begins
by fetching the dataframe corresponding to the specified dataset (df) and adjusting specific columns if
necessary. For instance, it converts abbreviation codes to meaningful labels, handles missing values, and
standardizes the format of the categorical variables. Next, it retrieves the column labels and uses them as
row labels for each category. It then iterates over each selected column to compute the relevant statistics.
For numerical variables, summary statistics such as the Median and Range (required for our outputs) are
used. For categorical variables, the percentage counts across the treatment groups were computed. The
computed statistics for each column were then concatenated into a single dataframe(result_df). Finally,
the columns are ordered based on the numeric treatment variable to ensure consistency in presentation
across the different analyses.

In [24]: def generate_table(df,treatment_var,selected cols):
df_df = dataframes[df]

if "SEX' in df_df.columns:
df_df.loc[:, 'SEX'] = df_df['SEX'].replace({'M": 'Male', 'F': 'Female'})

for col in df_df.select_dtypes(include=['object’]).columns:
df_df.loc[:, col] = df_df[col].apply(lambda x: 'Missing' if x == "' else x)
df_df.loc[:, col] = df_df[col].replace({'Y': 'Yes', 'N': 'No"})

df_column_labels = dataframes[df + " column_ labels”]
column_labels_df = pd.DataFrame({'Column Labels': df_column_labels.values()}, index=df_column_labels.keys())

var_dfs = []

for var in selected cols:
if var in df_df.columns:

Statistic = "statistic”

if df _df[var].dtype in ['intea', 'floate4']:
var_df_label = pd.DataFrame({’'Column Labels': [df_column_labels[var]], ‘Statistic': [df_column_labels[var]]}, index=[
var_stat_df = compute_ summary_stats(df_df, df_df, var, treatment_var)
var_stat df[statistic] = [" + x for x in var_stat_df[statistic]]
var_stat_df = pd.concat([var_df_label[['statistic']], var_stat df], ignore_index=True)
var_stat_df = var_stat_df.fillna(" ")

else:
df_df.loc[:, var] = df _df.loc[:, var].apply(lambda x: sentence case(x) if isinstance(x, str) else x)
var_df_label = pd.DataFrame({'Column Labels': [df_column_labels[var]], ‘Statistic': [df_column_labels[var]]}, index=[
var_stat_df = compute_percentage_count(df_df, df_df, var, treatment_var).rename(columns={var: "Statistic"})
var_stat_df[Statistic] = var_stat_df[Statistic].astype(str)
var_stat df[statistic] = [" + str(x) if not pd.isna(x) else "" for x in var_stat_df[statistic]]
var_stat_df = pd.concat([var_df_label[['statistic']], var_stat df], ignore_index=True)

var_stat_df = var_stat df.fillna(' ")

var_dfs.append(var_stat_df)

Concatenate the dataframes

result df = pd.concat(var_dfs, axis=0, ignore index=True)

result_df = result df.fillna('').replace([pd.NaT, np.inf, -np.inf], '")
result_df = col_order(result_df, df_df, treatment_var)

return result_df

Display 12. Integrating all functions into a single function generates both frequency counts and summary
statistics.

Here is the final function call encapsulating the entire process: it generates a table summarizing the
baseline demographic characteristics. The generated table data frame is then used in the ppt function to
produce a PowerPoint presentation titled "Baseline Characteristics," containing the summarized
demographic data, ready for further analysis and presentation.

In [25]: demog = generate table("adsl",treatment var,selected cols demog)
result ppt = ppt(demog,"Baseline Characteristics”,file path)

Display 13. Example calls of the generate_table and ppt functions.

Utilizing the generate_table function, the selection of columns and datasets can be tailored, allowing for
the creation of tables with different configurations.

DEVLOPING PYTHON FUNCTION TO GENERATE SPIDER PLOT.

To generate a spider plot PowerPoint presentation, the dataset was filtered, and specific values were set
to zero for baseline variables. Then, organize the data and create a spider plot using Plotly. Each
treatment variable value was assigned a unique color, facilitating easy interpretation. Subsequently, each
subject's data are plotted on the graph, with treatment duration on the x-axis and percent change from
baseline on the y-axis. Finally, the plot was embedded into a PowerPoint presentation for seamless
sharing and presentation.

In [66]: def spider_plot_ppt(df, treatment_var, baseline_var,baseline var_values, day, pchg, title, file path,output_path):

df_filtered = df.copy()
df_filtered.loc[df filtered[baseline var].str.upper() == baseline var values, day] = @
df_filtered.loc[df_filtered[baseline_var].str.upper() == baseline_var_values, pchg] = @
df_filtered.set_index(day, inplace=True)
fig = go.Figure()
treatment_var _values = df_filtered[treatment_var].unique()
treatment_var_label = column_labels.get(treatment_var, treatment_var)
colors = px.colors.qualitative.Plotly[:len(treatment_var_values)]
color_map = dict(zip(treatment var values, colors))
for subj, group in df_filtered.groupby('SUBJIID'):
group.sort_values(by=day, inplace=True)
treatment_var_value = group[treatment_var].iloc[@]
color = color_map[treatment_var_ value]
fig.add_trace(go.Scatter(x=group.index,y=group[pchg],
mode="1ines+markers”,
name=f"{treatment_var_label}: {treatment var value}',
marker=dict(size=5, color=color,),
line=dict(width=1, color=color,),
hovertemplate="USUBJID: %{text}
PCHGB: Z{y}<extra></extra>',
text=[subj] * len(group),
showlegend=False))
for treat value, color in color map.items():
fig.add_trace(go.Scatter(x=[None],y=[None],
mode="markers"',
name=f {treatment_var_label}: {treat value}',
marker=dict(
size=12,
line=dict(width=2, color=color),
color=color)))
fig.update_layout(xaxis_title='Treatment Duration (months)’,
yaxis_title='Percent Change from Baseline in Sum of Diameters’,
legend=dict(orientation="v",
yanchor="top",
y=1,
xanchor="right",
x=1,
bgcolor="white",
bordercolor="gray",
borderwidth=1,),
xaxis=dict(showgrid=True, gridcolor='lightgray'),
yaxis=dict(showgrid=True, gridcelor='lightgray'),
margin=dict(l=20, r=20, t=66, b=20),
paper_bgcolor="white",
plot_bgcolor="white",
width=1000,
height=600)
add_plot_to ppt(fig, title, file_ path,output_path)

Display 14. Python function to generate spider_plot_ppt.

In [67]:

spider_df["ADY'] = spider_df['ADY']/30.4375 #convert to months

pchg="PCHG"

day = "ADY"

baseline_var = 'AVISIT'
baseline_var_values = 'BASELINE

spider_plot_ppt(spider_df, treatment_var, baseline_var,baseline_var_values, day, pchg, "Spider plot", file_path,output_path)

Display 15. Example Call of spider_plot_ppt function.

Here is a presentation generated from these functions, providing a polished and professional overview of
the key baseline characteristics and spider plot. This PowerPoint presentation offers visually appealing
slides, presenting the summarized data and graphs in a clear and concise manner. With its sleek design
and organized layout, the presentation is well suited for use in meetings, conferences, and other
professional settings. It provides a streamlined platform for presenting important information, enhancing

communication, and facilitating productive discussion.

10

Baseline Characteristics

Placebo Xanomeline Low Dose Xanomeline High Dose
(N = 86) (N =84) (N =84)
Age
Median (Range) 76.0 (52, 89) 775 (51, 88) 76.0 (56, 88)
Pooled Age Group 1
65-80 42 (48.8%) 47 (56.0%) 55 (65.5%)
<65 14 (16.3%) 8 (9.5%) 11 (13.1%)
>80 30 (34.9%) 29 (34.5%) 18 (21.4%)
Sex
Female 53 (61.6%) 50 (59.5%) 40 (47.6%)
Male 33 (38.4%) 34 (40.5%) 44 (52.4%)
Race
American Indian or Alaska Native 0 0 1(1.2%)
Black or African American 8(9.3%) 6 (7.1%) 9(10.7%)
White 78 (90.7%) 78 (92.9%) 74 (88.1%)
Ethnicity
Hispanic or Latino 3(3.5%) 6 (7.1%) 3(3.6%)

Spider plot

@ Planned Treatment for Period 01: Placebo
| @ Planned Treatment for Period 01: Xanomeline High Dose
» @ Planned Treatment for Period 01: Xanomeline Low Dose

100

S0 A

-50

-100

D
A

-150

o 0.5 1 1.5 2 2.5

Treatment Duration (months)
Output 2. Final output slides on presentation deck.

Note: The data used to generate the spider plot were simulated and may not accurately represent the
specific context of an oncology trial. This is intended solely for illustration purposes.

CONCLUSION

In conclusion, the process outlined in this conversation demonstrates a comprehensive approach for
analyzing and presenting data using Python. Each step was meticulously planned and executed by
reading the SAS datasets to generate PowerPoint presentations. By leveraging Python libraries and

11

custom functions, users can efficiently process data, create visualizations, and produce professional
presentations. Whether summarizing the data or plotting complex data trends, the tools and techniques
discussed here offer versatile solutions for data analysis and communication. Once Python functions are
set up, they can be easily adapted and applied to various other studies, providing a reusable framework
for data analysis and presentation. Leveraging open-source technologies such as Python and its rich
library ecosystem enhances accessibility and flexibility, allowing users to harness the collective
knowledge and resources of the developer community. This emphasis on open-source technology
promotes collaboration and innovation, ensuring transparency and reproducibility in data analysis
workflows. By embracing open-source tools, researchers can efficiently tackle diverse analytical
challenges while contributing to a culture of shared knowledge and continuous improvements in the field
of data science.

REFERENCES

Pandas Development Team. Pandas: Powerful data analysis tools for Python, v1.3.3. Available at:
https://pandas.pydata.org/docs/

Rousselet, G. Pyreadstat: Read and Write SPSS and Stata files into/from pandas data frames. Available
at: https://github.com/Roche/pyreadstat

Harris, C.R., Millman, K.J., van der Walt, S.J., et al. Array programming using NumPy. Nature 585, 357—
362 (2020). Available at: https://www.num.py.org/

Scanny. Python-pptx Documentation. Available at: https://python-pptx.readthedocs.io/en/latest/index.html

Plotly Technologies, Inc. Python Graphing Library version 5.3.1. Available at: https://plotly.com/python/

Plotly Technologies, Inc. Kaleido: Static image export for web-based visualization libraries. Available at:
https://github.com/plotly/Kaleido

Python Software Foundation. Colorsys Documentation. Available at:
https://docs.python.org/3/library/colorsys.html

CDISC SDTM-ADaM Pilot Project. (n.d.). CDISC Pilot Project: Updated Pilot Submission Package.
GitHub. https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-
package/900172/m5/datasets/cdiscpilotO1/analysis/adam/datasets

ACKNOWLEDGMENTS

| would like to express my gratitude to Jagan Mogan Achi for his encouragement and support throughout
the process of learning Python and undertaking this project. His guidance and motivation have been
invaluable, and | am truly grateful for his assistance.

CONTACT INFORMATION

Your comments and questions have been valued and encouraged. Contact the author at:

Indraneel Narisetty

Jazz Pharmaceuticals

201-450-1480
Indraneel.narisetty@jazzpharma.com

12

https://pandas.pydata.org/docs/
https://github.com/Roche/pyreadstat
https://www.num.py.org/
https://python-pptx.readthedocs.io/en/latest/index.html
https://plotly.com/python/
https://github.com/plotly/Kaleido
https://docs.python.org/3/library/colorsys.html
https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets
https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets
mailto:Indraneel.narisetty@jazzpharma.com

