
1

PharmaSUG 2024 - Paper DV - 246

AutoVis Oncology Presenter: Automated Python-Driven Statistical Analysis
and Visualizations for Powerful Presentations

Indraneel Narisetty, Jazz Pharmaceuticals

ABSTRACT

In late-phase or first-in-human clinical studies, understanding clinical data is vital for informed decision
making, such as selecting the appropriate drug dose and evaluating its efficacy and safety. The traditional
process of converting ADaM datasets into TLFs (tables, listings, and figures) and integrating them into
clinical PowerPoint presentations has historically been a time-consuming task. Medical monitors and
clinical teams create these presentations to conclude on dose selection, escalation, and drug
effectiveness. Addressing this need, we've introduced "AutoVis Oncology Presenter," an innovative
Python-based tool designed to streamline the transformation of Oncology clinical trials data into clear,
impactful PowerPoint presentations. It's particularly adept at handling key ADaM datasets like ADTTE and
ADRS, which are crucial for assessing treatment effectiveness. This paper will demonstrate how to build
this tool, complete with Python code and practical examples. The goal of AutoVis is to make important
safety and efficacy data both comprehensible and visually appealing using Python packages. It
automates the generation of detailed tables and striking graphs, such as spider plots showing patient
responses, waterfall plots, and swimmer plots, all neatly incorporated into PowerPoint presentations.
Moreover, it helps in comparing CSR (Clinical Study Report) tables when they are generated, thereby
enhancing the efficiency and clarity of presentations. This feature is particularly beneficial for clinical
teams who need to regularly share their findings, be it in meetings, conferences, or reports. AutoVis
accelerates the sharing of vital information, thereby advancing our understanding and treatment of
cancer.

INTRODUCTION

Imagine diving into the world of data analysis for oncology clinical trials in an attempt to make sense of
complex information. A clear and effective presentation of these data is crucial for informed decisions that
could impact patients' lives. However, traditional methods of creating visualizations and integrating them
into presentations every month, every quarter, or at every review meeting are tedious and time
consuming. With AutoVis, the code is simply submitted using a terminal, and the presentation will be
ready for you in seconds.

This is where the AutoVis Oncology Presenter comes in. It is a game changer —a Python-based tool
designed to simplify the process of turning ADaM data into stunning visualizations and seamlessly adding
them to PowerPoint presentations.

It harnesses the power of Python libraries, such as Pandas, Matplotlib, Pyreadstat, python-pptx, to create
beautiful graphs and charts with just a few simple commands. These visuals not only look great, but also
help to understand the effectiveness of the data.

This paper aims to demonstrate how Python can transform the way clinical trial data is analyzed and
presented. Through practical examples, I will illustrate how AutoVis can save time, decrease errors, and
enhance the impact of presentations. By providing you with the ability to visually represent data, we hope
to empower you to make informed decisions and contribute to research advancements.

PYTHON PACKAGES USED

• To develop the AutoVis Oncology Presenter, we relied on a diverse set of Python packages, each
contributing unique functionalities to the tool's capabilities. Below is an overview of the packages
utilized in this project:

2

• To develop the AutoVis Oncology Presenter, we relied on a diverse set of Python packages, each
contributing unique functionalities to the tool's capabilities. Below is an overview of the packages
utilized in this project:

• Pandas: A fundamental library for data manipulation and analysis that serves as the backbone of our
data processing pipeline.

• Os: Facilitates file and directory operations, enabling seamless interaction between data files and
presentation assets.

• Pyreadstat: This enables reading and writing data in SPSS, SAS, and Stata formats, ensuring
compatibility with common data sources in clinical trials.

• NumPy: Provides essential functionality for array manipulation, mathematical operations, and
statistical analysis, enhancing the robustness and efficiency of data-processing tasks.

• Python-pptx: This allows for the creation and manipulation of PowerPoint presentations
programmatically, enabling dynamic generation of slides, text, shapes, images, and tables.

• Plotly and plotly.express: Provides interactive and web-based visualization capabilities, enabling the
creation of interactive plots, dashboards, and web applications directly from Python.

• Kaleido: Used for static image export from Plotly figures, ensuring compatibility with static formats
such as PowerPoint presentations.

• Colorsy and auxiliary packages: Utilized for color manipulation, styling, and additional functionalities
to enhance the visual aesthetics of presentations.

PYTHON PPT FUNCTION

The primary purpose of the ppt function is to enhance the efficiency and standardization of presenting
clinical trial data. By automating the generation of PowerPoint slides, this function significantly reduces
the manual effort involved in preparing presentations, enabling you and your team to concentrate more on
analyzing and interpreting the data. The ppt function generates PowerPoint slides from Python Dataframe
data, thereby facilitating the integration of clinical trial results into the presentation format. It requires three
parameters: result_df, which represents the dataframe containing the pertinent data; title, which specifies
the title of the slides; and file_path, which indicates the file path where the presentation will be saved.

3

Display 1. Python ppt functions to display Python Dataframe in a PowerPoint presentation.

Key Features:

1. Dynamic Slide Creation: This function dynamically creates slides based on the size of the
dataframe, ensuring that data are presented comprehensively while avoiding overcrowded slides.

4

2. Integration with Company Template: This leverages your company's standard PowerPoint
template, preserves brand identity, and ensures consistency in presentation style across all
materials.

3. Table Formatting: The function formats tables within slides, adjusting column widths and font
sizes as required to optimize readability and visual appeal.

4. Automatic Slide Title Setting: The title of each slide is automatically set based on the specified
title parameter, ensuring coherence and clarity in slide organization.

STREAMLINING DATA PROCESSING: FROM SAS DATASETS TO PRESENTATION

READING SAS DATASETS INTO PYTHON DATAFRAME S

A Python script was developed to facilitate the conversion of the SAS® data files into Python data frames.
The script, written in the Python programming language, utilizes the pandas, pyreadstat, and OS libraries
for data manipulation, reading SAS files, and file system operations, respectively.

The script begins by defining the folder paths in which the SAS ADaM data files are located, and specifies
the datasets of interest. The folder_path variable points to the directory containing the Analysis Data
Model (ADaM) datasets, whereas tlf_data_path points to the directory containing the TLF (Tables,
Listings, and Figures) datasets. Additionally, sel_datasets and tlf_datasets lists specify the datasets to be
processed from each folder:

Display 2. Importing necessary python modules.

The script begins by importing the necessary Python libraries: os for file system operations, pandas for
data manipulation, and pyreadstat for reading SAS data files.

Display 3. Python variables are defined.

Next, the script defines the folder paths and the datasets of interest. It also initializes the empty
dictionaries (Dataframe s and tlf_Dataframe s) to store the resulting data frames.

5

Display 4. Reading and converting SAS ADaM datasets into Python data frames.

The script iterates each file in the folder specified by folder_path. For each file ending with sas7bdat
extension, it extracts the table name from the file name and checks if it matches any of the datasets
specified in the sel_datasets. If a match is found, the script reads the SAS® data file using
pyreadstat.read_sas7bdat(), converts it into a pandas dataframe (df), and stores it in a database
dictionary. Additionally, it stores the column labels associated with the dataframe in a separate dictionary
entry with keys suffixed by _column_labels.

Display 5. Reading and converting SAS TLF output datasets into Python data frames.

Similarly, the script iterates each file in the TLF data-path (tlf_data_path). It follows the same procedure
as before to read the SAS TLF data files, but this time it checks if the table name matches any of the
datasets specified in the tlf_datasets(output-ready QC dataset). If a match is found, the resulting
dataframe is stored in the tlf_Dataframe dictionary along with the corresponding column labels.

DEFINING TREATMENT VARIABLES, SELECTING COLUMNS, POPULATION FLAGS, AND
FILE LOCATIONS.

Next, we define treatment variables, selecting columns needed for tables, and specify flags for safety and
efficacy assessments.

Display 6. Defining treatment variables, population flags, and column selection.

Next, we specify the file paths for the input and output files required to generate the presentation slides
and save the plot images.

6

Display 7. The locations of the paths were defined.

The file_path_temp variable refers to the company standard PowerPoint template, which serves as a
blueprint for the presentation slides generated by the tool. This template embodies a company's branding,
formatting, and stylistic preferences, ensuring consistency and professionalism across all presentations.

By specifying the company standard power-point template file, the tool can seamlessly integrate the
generated data into the existing design and layout. This ensures that the output presentation maintains
the same visual identity and adheres to established standards, which are crucial for effective
communication and conveying a unified message.

Using the company standard template also streamlines the presentation creation process by eliminating
the need to manually format slides or adjust the settings. The tool automatically applies predefined styles,
fonts, colors, and layouts from the template, saving time and effort, while ensuring a polished and
cohesive presentation.

Overall, leveraging the company’s standard PowerPoint template with all its settings ensures that the
output data are presented in a consistent and professional manner, aligning with the company's branding
guidelines and enhancing the impact and credibility of the presentation.

DEVELOPING PYTHON FUNCTIONS TO PRODUCE FREQUENCY COUNTS, SUMMARY
STATISTICS, AND COLUMN ARRANGEMENTS.

Compute Summary Stats function

The compute_summary_stats function streamlines the process of generating summary statistics from
data. First, it groups the main data frame by the treatment variable and calculates descriptive statistics
for the specified variable of interest, resulting in a summary dataframe (summary_df). Additionally, it
calculates the total number of subjects in each treatment group using ADSL data and merges this
information into the summary dataframe for clarity. The function then formats the summary data,

renames columns for readability, computes the median and range (and can include additional statistics if

needed) for each treatment group, and transposes the dataframe for better presentation. It also handles
missing data, if specified, ensuring that all relevant statistics are captured. Ultimately, the function returns
a dataframe (result_df) containing the computed summary statistics, empowering users to gain insight
into their data distribution and characteristics across different treatment groups.

7

Display 8. Python functions to generate the summary statistics.

Display 9. Example call of the compute_summary_stats function.

Output 1. Output from a compute_summary_stats Function

Compute Percentage Count function

The compute_percentage_count function simplifies the computation of percentage counts from the data,
such as the frequency counts in SAS®. However, it extends this functionality by providing percentages
and leveraging the treatment column for grouping. By grouping the main data frame according to the
treatment variable and specified count variable(s), the unique subject count within each group was
calculated. Concurrently, it computes the total subject count per treatment group using the demographic
dataframe and merges these counts to facilitate subsequent calculations. Depending on the specified
parameters, the function calculates the percentage of subjects within each group and formats the counts.

Display 10. Python functions to generate the frequency count statistics.

8

Display 11. Example call of compute_percentage_count function.

Output 2. Output from compute_percentage_count Function

Column order function

This function, col_order, helps arrange the columns in the dataframe based on the specified treatment
values. It looks at both your main dataframe and the ADSL dataframe that contains treatment data. First,
it finds unique treatment values and sorts them according to their numeric order. It then goes through
each treatment value, finds matching columns in the dataframe, and assigns a numerical order to each
treatment value. After sorting the columns according to the treatment variable, the dataframe was
updated with the newly organized columns. Overall, col_order makes it easier to analyze the data by
ensuring a consistent column order based on treatment values.

Display 11. Python function to order the treatment columns based on numeric treatment column.

COMBINING ALL THE PREVIOUSLY DISCUSSED FUNCTIONS INTO A SINGLE COHESIVE
SOLUTION.

The generate_table function integrates various functionalities to process and summarize data. It begins
by fetching the dataframe corresponding to the specified dataset (df) and adjusting specific columns if
necessary. For instance, it converts abbreviation codes to meaningful labels, handles missing values, and
standardizes the format of the categorical variables. Next, it retrieves the column labels and uses them as
row labels for each category. It then iterates over each selected column to compute the relevant statistics.
For numerical variables, summary statistics such as the Median and Range (required for our outputs) are
used. For categorical variables, the percentage counts across the treatment groups were computed. The
computed statistics for each column were then concatenated into a single dataframe(result_df). Finally,
the columns are ordered based on the numeric treatment variable to ensure consistency in presentation
across the different analyses.

9

Display 12. Integrating all functions into a single function generates both frequency counts and summary
statistics.

Here is the final function call encapsulating the entire process: it generates a table summarizing the
baseline demographic characteristics. The generated table data frame is then used in the ppt function to
produce a PowerPoint presentation titled "Baseline Characteristics," containing the summarized
demographic data, ready for further analysis and presentation.

Display 13. Example calls of the generate_table and ppt functions.

Utilizing the generate_table function, the selection of columns and datasets can be tailored, allowing for
the creation of tables with different configurations.

DEVLOPING PYTHON FUNCTION TO GENERATE SPIDER PLOT.

To generate a spider plot PowerPoint presentation, the dataset was filtered, and specific values were set
to zero for baseline variables. Then, organize the data and create a spider plot using Plotly. Each
treatment variable value was assigned a unique color, facilitating easy interpretation. Subsequently, each
subject's data are plotted on the graph, with treatment duration on the x-axis and percent change from
baseline on the y-axis. Finally, the plot was embedded into a PowerPoint presentation for seamless
sharing and presentation.

10

Display 14. Python function to generate spider_plot_ppt.

Display 15. Example Call of spider_plot_ppt function.

Here is a presentation generated from these functions, providing a polished and professional overview of
the key baseline characteristics and spider plot. This PowerPoint presentation offers visually appealing
slides, presenting the summarized data and graphs in a clear and concise manner. With its sleek design
and organized layout, the presentation is well suited for use in meetings, conferences, and other
professional settings. It provides a streamlined platform for presenting important information, enhancing
communication, and facilitating productive discussion.

11

Output 2. Final output slides on presentation deck.

Note: The data used to generate the spider plot were simulated and may not accurately represent the
specific context of an oncology trial. This is intended solely for illustration purposes.

CONCLUSION

In conclusion, the process outlined in this conversation demonstrates a comprehensive approach for
analyzing and presenting data using Python. Each step was meticulously planned and executed by
reading the SAS datasets to generate PowerPoint presentations. By leveraging Python libraries and

12

custom functions, users can efficiently process data, create visualizations, and produce professional
presentations. Whether summarizing the data or plotting complex data trends, the tools and techniques
discussed here offer versatile solutions for data analysis and communication. Once Python functions are
set up, they can be easily adapted and applied to various other studies, providing a reusable framework
for data analysis and presentation. Leveraging open-source technologies such as Python and its rich
library ecosystem enhances accessibility and flexibility, allowing users to harness the collective
knowledge and resources of the developer community. This emphasis on open-source technology
promotes collaboration and innovation, ensuring transparency and reproducibility in data analysis
workflows. By embracing open-source tools, researchers can efficiently tackle diverse analytical
challenges while contributing to a culture of shared knowledge and continuous improvements in the field
of data science.

REFERENCES

Pandas Development Team. Pandas: Powerful data analysis tools for Python, v1.3.3. Available at:
https://pandas.pydata.org/docs/

Rousselet, G. Pyreadstat: Read and Write SPSS and Stata files into/from pandas data frames. Available

at: https://github.com/Roche/pyreadstat

Harris, C.R., Millman, K.J., van der Walt, S.J., et al. Array programming using NumPy. Nature 585, 357–

362 (2020). Available at: https://www.num.py.org/

Scanny. Python-pptx Documentation. Available at: https://python-pptx.readthedocs.io/en/latest/index.html

Plotly Technologies, Inc. Python Graphing Library version 5.3.1. Available at: https://plotly.com/python/

Plotly Technologies, Inc. Kaleido: Static image export for web-based visualization libraries. Available at:

https://github.com/plotly/Kaleido

Python Software Foundation. Colorsys Documentation. Available at:

https://docs.python.org/3/library/colorsys.html

CDISC SDTM-ADaM Pilot Project. (n.d.). CDISC Pilot Project: Updated Pilot Submission Package.

GitHub. https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-

package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets

ACKNOWLEDGMENTS

I would like to express my gratitude to Jagan Mogan Achi for his encouragement and support throughout
the process of learning Python and undertaking this project. His guidance and motivation have been
invaluable, and I am truly grateful for his assistance.

CONTACT INFORMATION

Your comments and questions have been valued and encouraged. Contact the author at:

Indraneel Narisetty
Jazz Pharmaceuticals
201-450-1480
Indraneel.narisetty@jazzpharma.com

https://pandas.pydata.org/docs/
https://github.com/Roche/pyreadstat
https://www.num.py.org/
https://python-pptx.readthedocs.io/en/latest/index.html
https://plotly.com/python/
https://github.com/plotly/Kaleido
https://docs.python.org/3/library/colorsys.html
https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets
https://github.com/cdisc-org/sdtm-adam-pilot-project/tree/master/updated-pilot-submission-package/900172/m5/datasets/cdiscpilot01/analysis/adam/datasets
mailto:Indraneel.narisetty@jazzpharma.com

