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ABSTRACT

A strong endorsement from the Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) for efficient oversight of clinical investigations leads to a crucial role of risk-based
monitoring (RBM) in new drug development. The main goal of the RBM approach is to offer strategic and
effective ways to allocate resources across a study based on several key indicators, such as data
criticality, patient safety, protocol compliance, and others. One of the components in RBM is the Clinical
Trial Site Monitoring which presents a significant challenge as it requires timely insights generation from
the data coming from sites in almost real-time. As monitoring sites' activities is an important task to
ensure protocol compliance and safety of patients and the resulting drugs, in this paper, we introduce
how to aim it with a visualization approach using topological models of the data. We represent the clinical
data using a graph (a topological model) that captures the geometric properties of complex data and
where each node corresponds to a clinical trial subject, while two nodes are connected with an edge if
these two subjects have similar outcomes/indicators of interest. A variety of graphs can be generated
depending on indicators of interest. Those with robust geometric structures may further be analyzed using
interactive operations and various machine learning (ML) algorithms. Using the topological models, the
researcher can easily highlight data coming from specific sites and further analyze problematic pieces of
data. In an experiment, we demonstrate this visual discovery approach compared to standard statistical
methods.

1. INTRODUCTION

Recently, the growth and complexity of clinical trials have presented challenges in oversight due to
increased variability in investigator experience, site infrastructure, treatment choices, and healthcare
standards. Nevertheless, advancements in computer systems, electronic records, statistical assessments
as well as Artificial Intelligence (Al)/ML usage offer opportunities for alternative monitoring approaches,
such as centralized monitoring, to enhance the quality and efficiency of sponsor oversight. According

to [1], RBM is the process of ensuring the quality of clinical trials by identifying, assessing, monitoring,
and mitigating the risks that could affect the quality or safety of a study. The FDA encourages sponsors to
develop monitoring plans that address challenges emphasizing a risk-based approach focused on
preventing or mitigating significant risks to data quality and processes critical to human subject protection
and trial integrity.

The key components of RBM, as outlined in [2], are:
e key risk indicators (KRISs);

e centralized monitoring;

o of-site/remote-site monitoring;

e reduced source data verification (SDV);

e reduced source document review (SDR).

One of the key components of RBM is its use of centralized monitoring techniques. As opposed to on-site
monitoring based on 100% SDV, centralized monitoring offers a number of advantages:

e fewer errors due to less manual work;

e lower cost due to reducing the frequency and extent of on-site monitoring and auditing only the sites
where problems are most likely to occur;



e better analysis and cross-site comparison, since centralized monitoring also allows us to compare
data between sites and to identify potentially fraudulent, inaccurate, or biased data.

The FDA has provided some detailed guidance on how to prepare a monitoring plan [1], although
execution of the plan for specific clinical trials is still challenging and requires the search for new
approaches. We propose some visual solutions in RBM based on topological data analysis (TDA)
approach in combination with other AlI/ML techniques (see Sections 2 and 3 for methods description).
These solutions can help to supplement the statistical by-site data processing, identify some KRIs, as well
as can be used to reveal the problematic sites and provide alerts to perform targeted on-site investigation.
These solutions are flexible enough to account for any equity and diversity within the study.

To demonstrate the working prototypes of solutions, we use a publicly available National Institute on Drug
Abuse (NIDA) dataset [3]. The original NIDA experiment investigated if the buprenorphine/naloxone
combination tablet can be effectively used to treat patients with opiate dependence. A total of 582
participants on 38 centers were recruited. Study participation lasted 9 to 12 weeks for patients who
successfully achieved detoxification and up to 12 months for patients requiring longer buprenorphine
treatment. On baseline and during the trial, various data concerning general health, vital signs, drug
addiction, family history, psychological health, employment status, and other information (total over 280
variables) were gathered, as well as treatment results were indicated. The variety of data allowed us to
carry out the experiments, which are described in Sections 3 and 4.

2. TOPOLOGICAL DATA ANALYSIS

TDA is a relatively novel approach of building visual representations of complex datasets. This analysis
yields the extraction of comprehensive graphs from a dataset to provide a compressed graphical
representation of a multidimensional set of interrelated outcomes. When applied to clinical data, these
graphs consist of nodes corresponding to patients participating in a study and edges connecting those
patients who share similarities in terms of study outcomes or other indicators of interest. This section
focuses on the concept of the geometric properties of a dataset to understand how graphs can be
extracted from complex datasets and further modern ML algorithms and visual exploration techniques can
be used to detect subgroups of patients that share similarities.

2.1. TOPOLOGY AND DATA MINING

Topology is a field of mathematics that deals with the properties of objects that remain invariant under
continuous deformation. Imagine a surface that is made of a very thin and elastic material. The surface
can be bent, stretched, or crumpled in any way; however, it cannot be torn and its parts cannot be glued
together. As the surface is deformed, it changes in many ways, but some properties remain the same.
The idea underpinning topology is that some geometric properties depend not on the exact shape of an
object but, rather, on how parts of the object are combined.

As a simple example, consider geometric figures on the plane representing the numerical digits 0, 1, 2, ...
9. For a topologist, various representations of the digit O are equivalent since they can all be continuously
transformed into each other without cutting or gluing (see Figure 1 a-d). It is possible to change the size,
thickness, or slope of the digit 0 through continuous deformation; however, one property remains
invariant: the object separates the plane into two regions, hamely an interior region and an exterior
region. At the same time, 0 is not topologically equivalent to 1 or 8: 1 does not encircle a region and 8
contains two holes (see Figure 1 e). The topological classification of the digits 0, 1, 2, ... 9 results in the
following five classes:

{0}, {1, 2, 3,5, 7}, {4}, {6, 9}, {8}.

The digits in any of the classes are topologically identical, but no two digits taken from distinct classes are
equivalent from the topological point of view.
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Figure 1. Different representations of the digit O (a-d) are topologically equivalent. All share a
common topological property: they divide the plane into an interior region and an exterior region.
The digit e) is not equivalent to 0 since it encloses two interior regions

The number of holes in a geometric object is a basic topological property. Another significant property is
connectedness. Intuitively, an object is connected if it consists of a single piece. For example, the curve
representing 0 is connected; if any two points are removed from it, it becomes disconnected. Pieces of a
disconnected object that are themselves connected are referred to as connected components. In the
mathematical study of topology, all of these intuitive concepts are examined on a rigorous basis and
generalized to higher dimensions.

Topology deals with abstract mathematical entities, such as curves and surfaces, that consist of an
infinite number of points. In practice, however, all datasets are necessarily finite. Recently, a new field
has emerged at the crossroads of topology and data science. TDA aims to extract topological data, i.e.,
gualitative information, from finite sets of data points. It involves exploring datasets (viewed as finite
clouds of points in multidimensional space) at multiple scales or resolutions, from fine- to coarse-grained.
Given a complex dataset, TDA can be used to extrapolate the underlying topology and build a
compressed yet comprehensive topological summary of the dataset. TDA exploits various methods and
algorithms stemming from computational topology and geometry, statistics, and data mining. For detailed
expositions of the mathematical theories that underpin TDA and certain applications in biology, see [4],
[5], [6], and the references therein.

Topology was originally developed to distinguish between the qualitative properties of geometric objects.
It can be used in conjunction with the usual data-analytic tools for the following tasks:

1. Characterization and classification. Topological features succinctly express qualitative
characteristics. In particular, the number of connected components of an object is of importance for
classification.

2. Integration and simplification. Topology is focused on global properties. From the topological
perspective, a straight line and a circle are locally indistinguishable; however, they are not equivalent
if they are considered as a whole. Topology offers a toolbox to integrate local information about an
object into a global summary. Thus, topology can provide the researcher with a natural "big-picture”
view of complex, multidimensional data.

3. Features extraction. Topological properties are stable. The number of components or holes is likely
to persist under small perturbations or measurement errors. This is essential in data mining
applications because real data are always noisy.

2.2. TOPOLOGICAL DATA MODEL

In the context of clinical research, a dataset under study is typically a table of variables in a particular
clinical trial. The table rows correspond to individual participants in the clinical trial, and the columns
contain information on specific variable measures of interest, such as lab tests, vitals, questionnaires, etc.

Each row of this table can be depicted as a vector of variables describing a particular patient; this vector
can also be visualized as a point in a multidimensional space. However, visualizing the cloud of points



representing all participants in a clinical study becomes challenging when the dimensionality exceeds
three.

To facilitate the visualization of data in multidimensional scenarios, dimensionality reduction methods
prove to be particularly valuable. These methods reduce the number of variables (represented by
columns of data) needed to describe each data point while preserving the underlying data structure.

The dimensionality reduction methods simplify the visualization of datasets with numerous columns. The
commonly used dimensionality reduction methods include Principal Component Analysis (PCA),
Multidimensional Scaling (MDS), t-Distributed Stochastic Neighbor Embedding (t-SNE), and others.

The first algorithm, PCA, involves reducing linear dimensionality by transforming data into a new
coordinate system, making it easy to identify directions (principal components) that reflect the most
significant data variation. It is utilized to decompose a multidimensional dataset into a series of sequential
orthogonal components that explain the maximum variance. In PCA, the first principal component of a set
of variables is a derived variable formed as a linear combination of the original variables, explaining the
most variance. The second principal component explains the most variance of what remains after
eliminating the effect of the first principal component, and so forth.

Another algorithm, MDS, seeks a low-dimensional representation of data where distances accurately
reflect those in the original high-dimensional space [7]. MDS positions each object in a lower-dimensional
space in such a way that distances between objects are preserved as faithfully as possible. This method
constitutes a type of non-linear dimensionality reduction.

t-SNE is a method of non-linear dimensionality reduction that represents each high-dimensional object
with a two- or three-dimensional point in such a way that similar objects are modeled by nearby points,
while dissimilar objects are modeled by distant points with high probability [8]. The t-SNE algorithm
consists of two main stages. Firstly, t-SNE constructs a probability distribution over pairs of high-
dimensional objects such that similar objects are assigned higher probabilities, while dissimilar ones are
assigned lower probabilities. Secondly, t-SNE determines a similar probability distribution over points in
the low-dimensional space and minimizes the Kullback-Leibler divergence between the two distributions.

The dimensionality reduction methods are effective as they can decrease the number of dimensions
required to describe data while retaining their internal structure. However, two challenges accompany the
dimensionality reduction methods:

1. They compress a large number of dimensions into fewer ones. Consequently, data points that are
well separated in the multidimensional space may become neighbors or even merge into a single
point in the projection. This increases the likelihood of missing crucial information.

2. Different dimensionality reduction algorithms yield different results. None of these results are
incorrect; they simply differ because various algorithms emphasize different aspects of the data.
Relying on a single algorithm may lead to the oversight of important information.

Figure 2 illustrates an example of dimensionality reduction using the aforementioned methods from a
three-dimensional space to a two-dimensional space.
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Figure 2. An example of dimensionality reduction methods: a) The original dataset is represented
by a cube with three of its faces left unshaded; b) PCA projection; c) MDS projection; d) t-SNE
projection

Figure 3 presents a graph constructed from the dataset. The graph does not exhibit the typical issue
encountered in the dimensionality reduction methods, where points that are distant in a high-dimensional

space may overlap in a low-dimensional space.
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Figure 3. Graph built from the dataset

To construct the graph, several steps of the algorithm need to be followed. Let us illustrate this with a two-
dimensional dataset shown in Figure 4 a:

1. We define a function, called a projection function, on the dataset points, in our case we perform the
projection onto the x-axis. In Figure 4 b, the points are colored according to the projection values.

Next, we build a covering. Specifically, we order the data points according to their projection values
and divide them into overlapping intervals (Figure 4 c).

We then construct the graph, where the nodes of the graph are the data points, and an edge between
two nodes is drawn if these nodes lie within the same interval and are close according to the chosen
metric (Figure 4 d). Since the graph is a mathematical object consisting of nodes and edges, to
visualize it, we need to calculate the coordinates of the nodes to position them on the plane of the
figure. The graph's orientation differs from that of the original dataset because the nodes positions are
calculated without knowledge of the coordinates of the points in the dataset.
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Figure 4. Stages of constructing the graph: a) Original dataset; b) Dataset with points colored by
projection; c) Coverage, i.e., division into overlapping intervals; d) The resulting graph

The proximity of points in the dataset, which determines the presence of edges in the graph, is defined by
a metric (a distance function).

Distance metrics are functions d(a, b) such that d(a, b) < d(a, ¢) if objects a and b are considered "more
similar" than objects a and c. Two identical objects have a distance of zero. One of the most popular
examples is the Euclidean distance, which was used in the previous example. To be a "true" metric, it
must adhere to the following four conditions:



1. non-negativeness: d(a, b) = 0, for all a and b;

2. positive definiteness: d(a, b) = 0 if and only if a = b;
3. symmetry: d(a, b) = d(b, a);

4. the triangle inequality: d(a, ¢) < d(a, b) + d(b, c).

A graph based on a two-dimensional dataset can be constructed using a different metric, such as the
cosine metric, which represents the cosine of the angle between points denoted as vectors as shown in
Figure 5 a. The angle is what matters, irrespective of how far the points are from the origin, or how large
their coordinate values are. In the graph, edges connect vertices that form a small angle between them.
The nodes of the graph can be plotted using the coordinates of the dataset points, as depicted in

Figure 5 b, or the graph layout can be computed (see Figure 5 c).

The selection of the metric for the graph depends on the specific task at hand. It's vital to take this into
account when comparing the similarity of two patients; modifying the metric might result in a different
graph.

P L 0 0 0 p D; Cj
Y ] // s qu%-é‘(?JJ O
1 L/ ! ) o (T -~
iy o oS

Cosine distance &7y
/ a7 e Yo <
/ 5 p-// g o AP

A 7, » e,
y O Q:?»())n
=0 g0
0] Od)l OO
Point 2 o o ¢
" R
. e O(;?bo ® 0,
Point 1 [ =Y oo o
e ) Pl
: [¢]
a = ] Y °
P —y o o
) L= ] e
o @ @ o @ e o o o o o S e o o
> - — P [ ]
e © o o o o o o o o eoo o000
° e e
e o o o & o o o oy ©

a) Defining the cosine metric  b) The graph constructed using  ¢) The graph depicted within its
the cosine metric layout

Figure 5. Constructing a graph using the cosine metric: a) Defining the cosine metric; b) The
graph constructed using the cosine metric, with nodes coloring based on the angle relative to the
x-axis; ¢) The graph whose nodes are positioned according to the coordinates of the layout

When calculating the covering, we can divide the projection into equally overlapping intervals, which we
refer to as a uniform coverage. It is convenient to use the uniform coverage if the projection values are
evenly distributed across the entire range. In the case of uneven distribution, a balanced coverage is
preferable, in which each interval contains the same number of points.

Multiple projection functions can be used, and then the multidimensional projection is obtained as a
combination of several one-dimensional (uniform or balanced) projections. The combination is obtained
using the following algorithm: by iterating through all possible pairs of intervals from two projections, we
select points belonging to both intervals simultaneously (the intersection of intervals).

In the case of a two-dimensional covering, each interval represents a rectangle, and the covering consists
of a set of overlapping rectangles. In the three-dimensional case, we have intersecting parallelograms.

Let us explore some other functions for projections.



The Centrality projection indicates the distance of a point from the 'center' of the data or how well a point

conforms to the “norm” versus being an outlier. This function has one parameter p, and is computed using
the following formula:

1
Centrality(x) = ( N ,if1<p< +oo’
maxd(x,x;), if p =+
L

where d is a distance function, N is a number of points.
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Figure 6. A graph with the Centrality projection: a) Original dataset, colored according to the
projection; b) Resulting graph

The Density projection assesses the density of neighboring points around a given point and is calculated
using the following formula:

1

. _d d i 2
Gauss_density(x) = NZo)" P exp( (Zxdgq) ),

where ¢? is a scale parameter.

The graph with the Density projection is shown in Figure 7.



O [
05 ‘ O O O J @) )
@ 0, | o®
o~ L o~ e i
@] ( = \ )
0 © oo 0 O ¢
le '. C’D — @) D) O O
o® °c -
@ 0 o o '
a) Original dataset, colored according to the b) Resulting graph
projection

Figure 7. A graph with the Density projection: a) Original dataset, colored according to the
projection; b) Resulting graph

We can employ both the previously discussed dimensionality reduction methods and statistical functions
such as Max, Mean, Median, Variance, Entropy, and others as projections. Data-driven projections
involve variables from the data that were not utilized in constructing the original dataset. For example, in
clinical research, patient's age may serve as a projection. In this case, the graph would represent patient
stratification by age, connecting patients not only when they are close according to the chosen metric but
also when they are similar in age.

After the graph is constructed according to selected variables, the researcher then visually explores it to
discover interesting subgroups within the data. For example, the isolated components of the graph or
highly interlinked groups of nodes that form communities may indicate meaningful relationships within the
dataset.

2.3. AUTOMATIC COMMUNITY DETECTION

The key feature of a graph is a community structure, which relates to the way the nodes are organized in
communities. Specifically, many edges connect nodes within the same community (or cluster), while
comparably few edges connect nodes between different communities. These clusters or communities can
be considered to represent independent structures within the graph, and the detection of those
independent communities is one of the key goals in the analysis of large graphs that represent complex
relationships within datasets.

In graphs that represent real-world systems, the distribution of edges over subgroups of nodes is usually
non-uniform. This reflects the possible presence of some hidden structures and patterns in the graph, and
hence in the real-world data from which the graph was created. Specifically, some groups of nodes may
have high concentrations of edges, while the concentrations of edges between these groups of nodes
may be low. This structure takes the form of an intermediate-scale graph structure known as a community
structure, or a cluster structure, where a group of densely connected nodes is referred to as a community.
Figure 8 illustrates an example of a community structure within a graph that contains three clusters of
nodes with dense internal connections and comparably fewer connections between clusters.
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Figure 8. A schematic representation of a simple graph that has a community structure. The graph
contains three communities of densely connected nodes that have a much lower density of
connections (gray edges) between them

Communities, or clusters, are groups of hodes within a graph that are likely to share common properties
and/or play similar roles. In view of this, where possible, the aim of community detection is to identify
communities within the graph and their hierarchical organization by using the information that is contained
within the graph topology alone. Identifying the communities according to the topological properties of the
graph only allows the classification of nodes according to their structural position on the graph. Thus,
nodes with a central position in their communities share the largest number of edges with the other nodes
within the community, which may indicate the important role they play in the stability of the community. On
the other hand, nodes that are located at the boundaries between communities may play an important
role as mediators in the relationships and exchange between different communities.

The problem of graph clustering, intuitive at first sight, is actually not well defined. Though numerous
attempts have been made to analyze real-world systems based on the community structure in multiple
disciplines and through practical applications, graph theory does not define the problem of graph
clustering, and no universally accepted definitions of a community or partitioning into communities have
emerged. Therefore, the concepts of a community and partitioning into communities are to some extent
arbitrary and must be determined by researchers according to the specific problem under consideration.

Detecting communities within a graph (especially large ones) can be computationally difficult if the
number of communities within the graph is unknown and the size and density of the communities are
unequal.

2.4. A WORKFLOW FOR GRAPH-BASED DATA ANALYSIS

TDA is used to create a flexible and versatile workflow to perform graph-based data analysis. This
workflow can be adapted to a variety of scenarios and types of data in order to identify hidden patterns.
The key steps are summarized and highlighted in Figure 9. We see their implementation in our
experiment in Section 3. All of the steps in the workflow except Steps 1, 5, 8, are performed automatically
using ML algorithms.
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Figure 9. Workflow of graph-based data analysis
Let us expand on the steps in our workflow:

STEP 1. From a given dataset, the outcomes of interest are selected. At this step, some pre-processing
of data might be required to deal with irregularity, e.g., to account for missing data, to aggregate noisy
data, etc.

STEP 2. Using the selected outcomes of interest, a large volume of TDA-graphs is built by varying
parameters of the TDA algorithm, e.g., the parameters in the distance function, in the projection function,
etc. (see Section 2.2).

STEP 3. The most robust and representative graph is selected based on an array of criteria, e.g., an
adapter modularity score, Kolmogorov complexity, etc. In many applications, the majority vote or the
cumulative ranking among the optimality scores selects the most representative graph.

STEP 4. A selection of community detection algorithms is applied to the most representative graph at this
step to reveal hidden patterns within data in form of communities on the graph. The discovered
communities are highlighted on the graph by coloring and are subject to further analysis.

STEP 5. A selection of predictors of interest is integrated into the model to explain the detected
communities, and hence to explain hidden similarities within the dataset of study. At any time, additional
predictors can be incorporated into the model at this step to expand the search of unrelated features.

STEP 6. Communities on the graph correspond to subsets of patients. A comparison of communities is
performed at this step, e.g., by comparing sizes, overlap, persistence over different community detection
methods, etc.

STEP 7. Further pairwise or community-against-the-rest comparison of communities is done at this step
using statistical analysis based on predictors. Statistically significant predictors are selected. This step
helps to identify the key variables that are driving the community structure and involves a large volume of
automatic statistical tests.

STEP 8. At this final step, the statistically significant predictors of the discovered community structure are
being further interpreted, e.g., using subject-matter expertise.

3. KRI VISUALIZATION WITH TDA

In this section, we follow our workflow (see Figure 9) to demonstrate some of visual discovery tools that

TDA can provide for analysis of a KRI focusing on a patient retention problem. We consider patients who
discontinued treatment and those subjects who discontinued the study as KRIs of interest (for more KRIs
refer [9]). The reasons for the subject discontinuation may vary from a serious adverse event to quitting a
study without a known reason. Thus, absent records of visits or empty data are also included to this KRI.

The analysis was performed on all the 582 patients of CSP1018 study [3]. Having selected the outcomes
of interest, all missing values were filled with zeros following the aim to track “zero”-patients (either true or
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imputed) which are interpreted as subjects who discontinued treatment or the study. After building a
topological model, we detect and study groups of patients (communities) with similar data patterns and
discover significant differences between predictors, while paying special attention to “zero”-communities.

We build several topological models that visualize the data from different perspectives. The models
demonstrate how different parameters (metrics and projection) and outcomes of interest affect visual
representation of the same data in the form of a graph. Every node of each graph corresponds to a
patient and two nodes are connected if they are similar in outcomes based on the selected distance and
projection metrics. Focusing on the geometric properties of datasets, the experiment aims to unveil a set
of unrelated features that could have caused similarities in the discontinuation KRI. A representative
graph automatically highlights possible similarities within the data and discovers meaningful subgroups of
patients as communities on the graph. Further, by integrating various predictors from different areas, such
as demographic, social, etc., the revealed similarities can be described.

In this section, we demonstrate our TDA workflow on two classes of graphs, namely 1) a graphs built on
prescribed milligrams (mgs) of buprenorphine outcome, and 2) a graph built on a visit rates outcome.

3.1. DATA EXPLORATION BY A PRESCRIBED MILLIGRAMS OF BUPRENORPHINE
OUTCOME

In this subsection, we consider prescribed mgs of buprenorphine therapy taken as an outcome of interest.
After preprocessing the data, each subject is assigned a 532-dimensional row-vector with prescribed
buprenorphine mgs per day values (see Figure 10) corresponding to the 532-day duration of the whole
period of study. This vector represents different dynamics of ongoing treatment of the subject.

‘ = | mgs/day0 | mgs/dayl | mgs/day2 | ... | mgs/day531

Figure 10. A 532-dimensional row-vector with daily values of buprenorphine mg prescribed

Patients that have zero values starting from an early study day are patients with a high KRI of treatment
discontinuation and are the focus of our interest in this subsection.

Building different topological models

Let us explore different TDA models built on these data vectors in different projections and distances
metrics. Each node of the following graphs represents a single patient with the total of 582 nodes.

Figure 11 visualizes data by mgs in density projection and |1 Manhattan distance metrics, which is the
sum of absolute differences between vectors’ coordinates across all the dimensions. The coloring is
performed by mean mgs values prescribed during the whole study period varying from light yellow (small
mgs values) to dark red (large mgs values).
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Legend: less mgs - I - more mgs

Figure 11. TDA graph in density projection and 11 Manhattan distance metrics of the mgs per day
dataset. The coloring reflects the mean mgs values prescribed during the whole study period

Let us consider a correlation distance. It is computed as follows:

w—u) - (v—-7v)
d.(u,v)=1-— — -
¢ I(u — DI = D)l
where 7 is the mean values of the elements of a vector v, ||...||, is the standard Euclidean distance, and

a- b is the dot product of vectors a and b.

The correlation distance ranges from 0 to 2 and measures proximity of directions of trends. Thus, it is
sensitive to the slopes of the time series. However, it is centered, so it is not sensitive to the shifts and
does not distinguish the starting points of the trends (the baseline values of prescribed mgs) and thus the
mean mgs values during the visits.

Building a graph using the correlation metric (see Figure 12) incorporates similarity in the dynamics of
treatment doses but does not capture the absolute amount of buprenorphine prescribed. The graph
observed in Figure 12 is built using the centrality projection and nodes with similar trends are connected
with edges. The coloring is identical to that in Figure 11 and is performed by mean mgs values.
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Legend: less mgs - W - more mgs

Figure 12. The TDA graph build using the centrality projection and correlation metrics of the mgs
per day dataset. The coloring reflects the mean mgs values prescribed during the whole study
period.

Finally, let us introduce a combined metric:

den(h, ) = d(&, )+ du(d, )

which is used to measure the dissimilarity between participants. The metric d,, is composed of the
correlation distance, which was introduced above, and the following absolute value of difference
between the mgs means:

u—7v

dp(u,v) =2

’

max a;
a,i

where max is taken over all coordinates a; of all vectors a of the dataset (i.e., it is maximum mgs values
observed). Means are normalized in such a way that d,,, ranges from 0 to 2. It is done in order to balance
d,, contribution with the one provided by the correlation distance d..

This metric is designed to capture the difference in treatment trends (increasing or decreasing) as well as
the mean values of mgs of buprenorphine prescribed during the whole period of the experiment. The
corresponding graph built using the centrality projection is presented in Figure 13.
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Legend: less mgs - N - more mgs

Figure 13. The TDA graph built using the centrality projection and combined metrics of the mgs
per day dataset. The coloring reflects the mean mgs values prescribed during the whole study
period

Community detection and description

After the topological model is extracted, a community detection algorithm is applied to reveal interesting
subgroups within the data. Let us demonstrate results of the clique percolation algorithm with a 5-clique
applied to the last graph. The discovered communities are highlighted on the graph by coloring (Figure
14). The method finds 7 communities and 75 non-community gray nodes. Note that the smallest third
(pink) community is comprised of patients with no data at all (quitted the study at the very beginning).
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Figure 15. The MDS projection and mean trends of communities

Figure 15 indicates that MDS projection is well aligned with the TDA graph, although some points may be
invisible in the MDS projection due to the overlay. The mean trends of the percolation communities well
stratified by the outcomes.
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Let us incorporate various predictors in order to explain the patterns found by the clique percolation
method.

Running statistical tests, a table of statistically significant predictors with the p-values < 0.05 (a level of
significance) is calculated to establish that the distribution of the predictors for a selected community of
nodes was different from that of another community or all the rest of the dataset (i.e., complementary
points). After a significance level of any predictor was found to be statistically significant, we are able to
construct a histogram representing normalized frequency distributions of the predictor for both the nodes
in the selected pair of communities or for the community and its complementary.

For the purpose of the statistical analysis, continuous, mixed, binary, and categorical (non-binary)
univariate predictors were differentiated according to a variable type. Continuous predictors were
examined using the standard two-sample Mann-Whitney—Wilcoxon test. To examine the statistical
association between two samples within the categorical data, the Fisher's exact test and the y?-square
test were used for the binary and non-binary categorical variables, respectively.

We focus our main attention on the two communities with low retention rates (a high treatment
discontinuation KRI). These communities are the third (pink) community which comprises absolutely
zero values (i.e., patients having no visits and completely empty mgs data) and the zeroth (blue)
community with rapidly decreasing to zero mgs rates (it is the biggest community) (see Figure 14).
Several significant differences (p-values < 0.05) are presented below. We do not set ourselves the task of
providing a comprehensive analysis and simply show a few examples.

The zeroth (blue) community has a significantly higher rates of ‘will to work with study physician’, lower
values of alcohol dependences, days outpatient and heroine in past 30 days values (see Figure 16).
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Figure 16. The zeroth (blue) community vs all the rest of the dataset

As to the third (pink) community, it differs significantly with all the rest of the dataset by the predictor of
legal problems with prostitution. As to the pairwise comparison, it shows significant differences in race
distribution with the first (orange) community with the lowest treatment discontinuation KRI (see Figure
17).
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Comparing the first (orange) community with other communities, a significant difference can also be
observed by heroine in past 30 days and socio-employment pattern predictor (Figure 18).
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Figure 17. The third (pink) community
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Figure 18. The first (orange) community

3.2. DATA EXPLORATION BY A VISIT RATES OUTCOME

In this subsection, we do not focus on treatment discontinuation as a KRI. Instead of treatment outcomes,
we consider visit rates (VR) as outcomes, which allows us to capture the KRI of subject discontinuation.

Let us describe in more detail how the VR values are constructed. Following the protocol (see [3]), the
whole period of study is partitioned into 6 parts: week 1, weeks 2-6, weeks 7-12, weeks 13-26, weeks 27-
52, and weeks 53-76. Each part contains a fixed number of expected visits: 2 visits during the first week,
5 visits weekly during weeks 2-6, 6 visits weekly during weeks 7-12, 7 visits once in two weeks during
weeks 13-26, 6.5 visits once in four weeks during weeks 27-52, and 6 visits once in four weeks during
weeks 53-76. We also incorporate into the VR values taper and complement data starting from week 7
(according to the protocol) by adding 1 in the numerator for the taper and assigning plus 1 to the rate if
the patient successfully completed the study. The corresponding formulas for VR values are the following:

VR1 = (# of visits during week 1)/2,

VR2 = (# of visits during weeks 2-6)/5,

VR3 = ((# of visits during weeks 7-12) + taper)/6 + complete,
VR4 = ((# of visits during weeks 13-26) + taper)/7 + complete,
VRS5 = ((# of visits during weeks 13-26) + taper)/6.5 + complete,
VR6 = ((# of visits during weeks 53-76) + taper)/6 + complete.
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Thus, each subject is assigned a 6-dimensional row-vector with VR values (see Figure 19) for 6 different
periods of the study. This vector represents the attendance dynamics, retention, and successful
adherence to protocol.

‘ = VR1 VR2 VR3 VR4 VR5 VR6

Figure 19. The 6-dimensional row-vector with visit rates during 6 parts of the whole period of the
study

Building a topological model

Let us now explore a TDA model built on these data vectors. Figure 20 visualizes data by visit rates in
the centrality projection and |11 Manhattan distance metrics. The coloring corresponds to that in Figure 11,
Figure 12, and Figure 13 and is performed by mean mgs values prescribed during the whole study
period varying from light yellow (small mgs values) to dark red (large mgs values).

Legend: less mgs - N - more mgs

Figure 20. The TDA graph built using the centrality projection and 11 Manhattan distance metrics
based on the visit rates dataset. The coloring reflects the mean mgs values prescribed during the
whole study period

We can highlight patients of interest by using different colorings. For instance, coloring nodes by
completion status or prescribed buprenorphine tapering of patients (Figure 21).
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a) by completion status (light yellow — not b) by taper rates (less - - more)
completed, dark red - completed)

Figure 21. Coloring of the TDA graph

Communities detection and description

Upon applying the 4-clique percolation algorithm (Figure 22), we obtain 16 communities and 39 non-
community grey nodes. As it can be easily observed, the method distinguishes communities (the biggest
second and first ones as well as the fourth and fifteenth small ones) which mostly comprise patients who
had completed the study (with a low KRI of subject discontinuation) and all the other communities (with a
high KRI of subject discontinuation).
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Figure 22. The output of the 4-clique percolation method
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We also consider the mean community trends built by visit rates (Figure 24) to illustrate how the TDA
graph stratifies the data. The trends are well aligned with the completion status coloring on Figure 23 a)
and indicate how the percolation communities differ by the outcomes.
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Figure 24. Mean trends of five biggest communities by visit rates

The subgroups of Figure 25 can further be studied by utilizing standard statistical methods to determine
the predictors that may be responsible for the similarity of the attendance pattern observed within the
identified subgroup of patients.

Let us incorporate predictors in order to give examples of pattern explanation found by the clique
percolation method.

It is discovered that the sixth community significantly differs by a gender predictor from all the rest nodes
of the graph as well as by the pairwise comparison (see Figure 26). While men and women are almost
equally distributed in the sixth community, the majority of the participants in the study were men. It is also
established that even more men are in the first community (significant difference, p-value < 0.05, with the
rest of the dataset).
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Figure 26. Differences in a gender

This first community has also differences in a socio-living distribution predictor (with a significantly bigger
percent of those who live in controlled environment) as compared to the fourth community as well as it
differs by a socio-occupation predictor from the second (see Figure 27), seventh and ninth
communities.
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Figure 27. Differences in socio-living and socio-occupation distributions for the first community

The first, second and forth communities significantly differ by a socio predictor with the majority having
an automobile compared to the seventh, ninth and fifteenth communities (Figure 28), where most of the
people does not have a car.
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Figure 28. Differences in automobile available

Another example of the significant differences of the ninth community is by a demographical predictor of
religion in comparison to all the rest of the dataset as well as in the pairwise comparison, with both the
first and second communities (Figure 29).
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Figure 29. Differences in religion
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The presented analysis with applying visual discovery tools can be implemented on any other topological
model built on predefined outcomes of interest by various predictors.

4. BIAS DETECTION WITH TDA

The experiment concerns the bias detection in data collected during a clinical study at a center. A “center”
is also referred herein to as a “site” and means a place of collection of data. For this research, we select
some variables, which are measured for each patient during some visits, then we contaminate the data
separately by variables and by centers and, finally, compare the ability of common statistical methods as
well as TDA to detect the fact of contamination.

For the experiment, we selected 339 patients out of 582 who completed at least 10 visits (including the
baseline visit) during the first 9 weeks of the study. Among the selected 339 patients, there were those
who had one missed visit during these weeks. Data on this missed visit were completed using the Last
Observation Carried Forward (LOCF) method. The variables measured during these 9 visits included both
binary variables (the presence or the absence of drugs in the urine, the presence or the absence of
certain symptoms of opiate addiction, etc.) and continuous variables (temperature, pulse, blood pressure
(BP), respiratory rate, weight, etc.). Data on the presence of drugs, as well as data on the presence of
symptoms of opiate dependence were aggregated in such a way as to obtain new indicators, namely the
number of different drugs in the urine and the number of different symptoms of opiate dependence by
visit. Continuous variables were left unchanged. The total number of variables is 9.

4.1. STATISTICAL METHODS FOR BIAS DETECTION

The problem of bias and fraud detection in data of multicenter clinical trials is considered from a statistical
point of view in many sources (see [10], [11], [12])). The main idea is to use statistical criteria to identify
“atypical behavior” of the center. To do this, a number of variables measured in patients are considered,
and for each of these variables a comparison is made of the patients of the center versus all other trial
patients. The null hypothesis is that the variable distribution among the center patients should be the
same as the distribution across the entire population. A high level of significance (p < 0.05), especially if
observed for a particular center across multiple variables, may indicate that the center's data are biased,
contaminated, inaccurately collected, or fabricated. As it is said in [12], a very large number of possible
statistical methods challenges the selection of the most appropriate methods to identify unusual patterns
at centers. So we concentrated on the most common tests, like the t-test, F-test for variances, and Mann-
Whitney-Wilcoxon test for continuous variables, which provided almost the same results (further we
consider only results of the Mann-Whitney-Wilcoxon test). For discrete variables, the y?-test was applied.

Also note that in typical situations, statistical methods are univariate. However, in our experiment, the
data consist of repeated measurements of variables. Therefore, for the statistical comparison of the
center versus all other centers, we had to aggregate the measurement results of each variable within a
patient. For continuous variables, we calculated the mean for each patient, while for discrete variables,
we calculated the 0.8 quantile for each patient and discretized it again by dividing the obtained quantiles
into several intervals.

4.2. TOPOLOGICAL MODELS FOR BIAS DETECTION

Bias detection in data using TDA is based on the hypothesis that the nodes of the graph corresponding to
patients from the affected center tend to group, see Figure 30.
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Figure 30. Bias detection in clinical trial central monitoring
The TDA approach potentially offers several advantages compared to statistical methods, namely:
e TDA allows for visually identifying data grouping without manipulation of numbers and tables.

e TDA enables visualization of even small subsets of patients, for which statistical methods are not
suitable.

¢ TDA enables building the model by using any type of variables also for combination of variables of
different types, statistical methods should be carefully selected with respect to the types of variables of
interest.

e TDA allows considering multiple of variables simultaneously when constructing a topological model
(e.g., results of measurements of the same variable over multiple visits), whereas commonly used
statistical methods are univariate. As noted in [10] , "multivariate statistical techniques offer more
checking possibilities, but they are seldom used in clinical trials, if at all."

The topological model of the data is constructed separately for each of the selected variables. The vector,
representing each patient, is given as

& - | Baseline | Visit1 | Visit2 | Visit3 .. | visito

Each of the 9 variable-based graphs includes 339 patient nodes connected by edges if they have similar
variable dynamics. The Manhattan and Euclidean metrics and eccentricity and density projections were
used in constructing the graphs. For each variable-based graph, we highlighted each of the 10 major
centers to obtain 90 center-colored variable-based graphs, see Figure 31.
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a) by number of opiate symptoms, nodes coloring b) center-colored graph by diastolic BP, center 771
by centers; is highlighted

Figure 31. Variable-based graphs
4.3. EXPERIMENT RESULTS AND DISCUSSION

In the experiment, we contaminated the data by each of the 10 major centers according to the following
schemes:

For continuous variables:
e Shift by a constant value (2 variants)
¢ Shift by a value following a normal distribution (2 variants)

e Transformation of data given by exp(In(x + 0.5) + 2sd) — 0.5, where sd is the standard deviation of
log-transformed values of x. This transformation was considered in [11] in testing statistical methods
for fraud detection.

For discrete variables:
e Shift by a constant value
¢ Replacing all the values within the patient with their median.

Thus, we obtained 10 centers x 5 schemes x 6 variables = 300 contaminated datasets for continuous
variables and 10 centers x 2 schemes x 3 variables = 60 contaminated datasets for discrete variables.

It is worth noting that introducing bias in many cases cannot be easily detected through simple
observation, as biased variable values often fall within the normal ranges of these variables.

For all contaminated datasets, new variable-based graphs were constructed. The assessment of the
degree of grouping of nodes within biased center was conducted by two methods. We evaluated the
degree of grouping subjectively by visually dividing the graphs into three categories: with no grouping,
with mild grouping, and with strong grouping of the center nodes, as well as using two objective node
grouping indices: the connectivity index, which represents the fraction of edges connecting patients of the
same center to the maximum possible number of edges connecting these patients, and the average
clustering coefficient of center nodes, where the node clustering coefficient is the fraction of possible
triangles through that node that exist.

From the statistical point of view, the main difference between unbiased and biased cases should be in
absence and presence of significant difference of a center from others (p > 0.05 and p < 0.05,
respectively). From the TDA point of view, the biased case should demonstrate stronger grouping of
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center nodes than the unbiased one. The main results of the experiment depending on p-value
combinations of unbiased/biased cases are summarized in Table 1.

Unbiased variable p-value / Biased variable p-value
Case | Case ll Case lll Case IV
> 0.05/< 0.05 > 0.05/> 0.05 < 0.05/< 0.05 < 0.05/> 0.05
% % % %
Number of cases
(out of 360) 137 38.1 74 20.5 121 33.6 28 7.8
Demonstrate
increasing
node 124 90.5 50 67.6 104 86.0 8 28.6
grouping
indices
e Can be
g detected 99 72.2 16 21.6 71 58.7 2 7.1
= | visually
o

Table 1. TDA vis statistical methods in bias detection

A statistically significant difference of a center from other centers (p < 0.05) can be seen in the graph by
the grouping (mild or strong) of nodes belonging to that center. The absence of hode grouping is well-
aligned with the inability to reject the null hypothesis (p > 0.05). In 78 out of 90 (86.7%) unbiased center-
colored variable-based graphs, grouping of center nodes corresponds to significant statistical difference
of the center or ungrouping corresponds to insignificance, see Figure 32.

a) systolic BP, center 771; p < 0.01; b) systolic BP, center 539, p = 0.344;
center nodes mild grouping no center nodes grouping

Figure 32. Correspondence of significant difference and center nodes grouping on graphs

188 cases out of 360 biased cases (52%) are visually detected by graphs (grouping of the center nodes
in the biased case is stronger than in the unbiased one) and in 286 cases (79%) graph clustering indices
increase in the biased case, as shown in Figure 33.
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a) unbiased data, connectivity index=0.03, b) biased data, connectivity index=0.28,
p=0.177 p < 0.01

Figure 33. The variable-based graph by a pulse rate. The patients from center 622 are colored. The
bias introduced is a constant shift by +10.

258 cases out of 360 (72%) demonstrate significant difference of biased centers (at a p-value of 0.05),
although, only in 137 cases (38.1%) centers behavior before and after bias introduction is natural (p >
0.05 before contamination and p < 0.05 after, see Case | in Table 1). In 127 cases (33.6%) statistical
approach does not differentiate the unbiased and biased cases (both p-values are < 0.05), butin 71
(58.7%) cases out of these 121 the biased variable-based graph demonstrates stronger center nodes
grouping (see Case lll in Table 1).

There are some cases in which the statistical approach does not allow to draw a conclusion about bias (in
biased and unbiased cases both p-values are > 0.05, see Case Il in Table 1), but TDA visualization
demonstrates stronger center nodes grouping in the biased case, see Figure 34.

a) unbiased, number of opiate symptoms, b) biased, number of opiate symptoms,

center 862; p = 0.77; no grouping of center nodes  center 862; p = 0.13; mild grouping of center
nodes

Figure 34. Center nodes grouping in the biased case, although both unbiased and biased p-values
are > 0.05

28



It is worth noting that many centers statistically significant differ from the others (p < 0.05) even in
unbiased data. It may be caused by data particularities, patient selection (339 out of 582), data
preprocessing, or other reasons. At the same time, we discovered that one of the centers (center 178)
significantly differs from the others and demonstrates strong center nodes grouping in 7 out of 9
variables, which is a signal to check the data gathering and processing at this center, as shown in Figure
35

o ot
o o
¢) number of opiate symptoms

d) body temperature

Figure 35. The variable-based graph with unbiased data for center 178. The similarity of patients
from center 178 by a number of variables is a signal to check the data integrity in this center

Thus we conclude that TDA effectively detects bias in cases where statistical methods can also identify it,
and it can also discover the data contamination in some cases where statistical methods do not show
differences between biased and unbiased cases (both p-values are < 0.05 or both p-values are > 0.05).
Thus, an advantage of the TDA approach is its visual component.

CONCLUSION

In this paper, a novel graphical method for visual discovery in Risk Based Monitoring was discussed. The
method, based on Topological Data Analysis (TDA), produces a topological model of a dataset in the
form of a graph. In this graph, a node represents a single patient, while two nodes are connected with an
edge in the corresponding patients are close with respect to some variables of interest. Several features
can be incorporated into the graph, and the model can present multivariable data in one structure, thus
allowing the researcher to focus on various aspects of the study at once. By visually analyzing the graph,
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and further using some ML algorithms, various parts in the graph can identified as interesting. These
parts in the graph could be further analyzed with statistical methods.

Risk Based Monitoring is an important component of modern clinical trials. The elements of RBM are not
fully standardized and it presents a significant challenge for clinical researchers and stakeholders.

In this paper, we apply the graphical method of TDA to address several challenges within RBM, namely,
patience retention (as a part of Key Risk Indicators) and remote monitoring of activity in clinical centers.
Two experiments were carried out. In the first, a topological model for patience retention and drop-out
rates was analyzed. In the second, a procedure for detection of systematic bias (artificially introduced or
already present) using visual discovery was discussed. The method was further compared to the classical
statistical methods. It was demonstrated that in many cases, due to intrinsically multivariate nature of the
topological model, the TDA approach has an advantage over the classical statistical methods which are
often focus only on one single variable.
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