
1 

 

DV-323  

Tales From a Tech Support Guy: The Top Ten Most Impactful Reporting 
and Data Analytic Features for SAS Programmers 

Chevell Parker, SAS Institute Inc. 
 

ABSTRACT  

This paper helps you get the most out of SAS software by discussing some features that can make a big 
impact on your job as a SAS programmer or a data analyst. Some of the areas covered include the 
following: 

• features that highlight the power of SAS reporting, which allow SAS programmers to generate 
customized reports 

• SAS integration with open-source tools, as well as automation 

• some of the most impactful features in SAS® Viya® 

INTRODUCTION  

SAS®9 and the SAS Viya platform have the capability of answering some of the most complex business 
problems. This paper covers topics and methods that address these convoluted questions. The paper 
covers key topics within the SAS language and is organized to build on earlier examples. These topics 
include the following: reporting needs, programming automation, SAS integration with open source, 
reading files of various formats, SAS Viya features and functionality, and more.  

1.  USING THE OUTPUT DELIVERY SYSTEM 

The most fundamental part of the Output Delivery System (ODS) is the output object. An output object is 
created when a template definition is combined with data that is generated when a DATA step or 
procedure is executed. This output object is then sent to the open destination. In the current releases of 
SAS®9 and SAS Viya, the default destination is the HTML5 destination for SAS® Studio, SAS® Enterprise 
Guide®, and HTML4 for the SAS display manager. Note that ODS is not limited to generating HTML, but it 
is the default destination. 

Some of the formats that can be requested by the clients or by using the ODS statements include XLSX, 
PDF, PPTX, DOCX, XML, Output, RTF, CSV, and more. Along with the many ODS destinations that can 
be generated from this output object, the TEMPLATE procedure provides the styling component with the 
formatted destinations.  

ODS EXCEL 

The ODS Excel destination generates output in the Microsoft Office Open XML SpreadsheetML file 
format (XLSX). This destination automates the generation of Microsoft Excel worksheets directly from 
SAS®9 and SAS Viya by creating presentation-ready Excel spreadsheets. There are many highlights of 
this destination, but none are more important than the ability to eliminate manual work. Some of the most 
used functionality that the options supply includes the ability to name and color worksheet tabs, freeze 
row and column headers, add filters, start output in specific locations, and more. Other functionality 
includes the ability to add graphics using both SAS/GRAPH® and ODS Graphics, add formulas, and add 
multiple worksheets per workbook. Example 1 shows how you can use this destination to create 
customized output similar to Output 1 below.  

  



2 

 

Example 1 

ods excel options(embedded_titles="yes" 

                  frozen_headers="yes"                

                  autofilter="1-3"  

                  sheet_name="BP_Study" sheet_interval="none"                  

                  tab_color="red") style=styles.meadow; 

 

 data _null_;   

   declare odsout obj(); 

   obj.image(file:"c:\temp\hbp2.jpg"); 

 run; 

 

 title "Study of Smoking and Blood Pressure Status"; 

 proc report data=sashelp.heart(obs=100); 

 where bp_status="High"; 

 column Sex BP_Status Smoking_Status diastolic Systolic dias_adj syst_adj ; 

   define BP_Status / "BP Status"; 

   define dias_adj / computed style(column)={tagattr="formula:=sum(RC[-

2]+5)"  background=lightgray};  

   define syst_adj   / computed style(column)={tagattr="formula:=sum(RC[-

2]+10)" background=lightgray}; 

 run; 

ods excel close; 

 

 Added Excel options to include titles, freeze column headers, add filters, provide sheet names,  
    modify tab colors, and prevent creation of a new worksheet when a new object is added. 

 Used the Report Writing Interface to add a logo to the worksheet using the image method. 

 Added formulas to the dias_adj and syst_adj columns using the TAGATTR= attribute. 

 

 

         
Output 1. Output from ODS Excel 
 

ODS OUTPUT  

The ODS OUTPUT destination can generate output data sets so that you do not have to rely on 
procedures. You can create data sets with ODS using the ODS OUTPUT destination along with either the 
object name or label set to a named output data set. Use the ODS TRACE statement to get the name of 
the object as shown in Example 3, which produces Output 3. 



3 

 

Example 3 

ods output moments=moments_AP;   

proc univariate data=sashelp.class; 

var age; 

run; 

    

proc print data= moments_AP;                                                           

run; 

 

 Used the ODS OUTPUT statement along with the MOMENTS output object to generate the output  
     data moments_AP. 

 

  
 Output 3. Output from ODS OUTPUT destination   
 

2. GENERATING EMAILS FROM SAS 

You might want to generate email as a part of your code to provide customized output or to indicate a 
successful job completion. The ability to generate emails from SAS is simple, yet powerful. There are a 
few methods of generating emails, most of which involve interacting with the operating system. None of 
these methods is as simple as the EMAIL access method of the FILENAME statement.  

The EMAIL access method enables you to send an email attachment and write in the body of an email as 
demonstrated in Example 4.  Writing to the body of the email allows you to send the output as text or 
HTML (SMTP). Sending output as HTML allows flexibility with the style generated.  

ATTACHING AN EMAIL 

One benefit to creating output as an attached email is that you can specify your file format. For example, 
you can attach an Excel file that includes formulas to allow the user to further interact with the data in the 
worksheet. Another example would be to provide a PDF file, which lets the user to print while still 
preserving the formatting (unlike printing an HTML file). Table 1 lists options that are specifically used with 
an attached file. These options are used either to attach an email or within the ATTACH= option: 

ATTACH= Specifies the path and name of the attachment   

CONTENT_TYPE=   Provides the name and the mime type to use 

EXT= Add the extension of the attached file 

LRECL= Include record length to prevent truncation 

Table 1. Options used when attaching files to an email 

Example 4  

Ods pdf file="c:\temp\sample.pdf";   

  Proc print data=sashelp.class; 

  Run; 

Ods pdf close; 

 



4 

 

filename output email to="chevell.parker@aol.com" 

                 attach=("c:\temp\sample.pdf" ct="application/pdf"   

                 ext="pdf") 

         subject="Summary of Accounts"; 

data _null_;  

   file output;  

   put "Attaching document"; 

run; 

 

 Created a sample PDF file using the ODS PDF destination, which is attached in the email. 

 Attached the PDF file using the ATTACH= option along with additional options.  

 Wrote text to the body of the email along with attaching the file to the email. 

 

WRITING TO THE BODY OF THE EMAIL 

Writing to the body of an email can be done as text or HTML. The output is sent as HTML when you 
specify the EMAILSYS=SMTP system option. Set the CONTENT_TYPE= option to text/html to display the 
output as HTML rather than simply showing HTML tag. If you want to generate HTML output in the body 
of the email, use the MSOffice2K ODS destination because it uses styles that work well with Outlook and 
other popular web mail applications.  

Some of the benefits of writing to the body of the email include the ability to add styles, hyperlinks, 
images, and additional functionality available to the browser. Example 5 shows how to send an email 
(shown in Output 4) to each winner of the North Carolina education lottery of taxes owed using the EMAIL 
access method.  

Example 5 

options emailsys=smtp emailhost=mailhost.dca.com;  

 

 data one; 

  input name $17. amount_won  type $14. email $25.; 

format amount_won dollar.; 

cards; 

Bill Hemmer      22000 Mega Millions b.hemmer@yahoo.com 

Gloria Mackenzie 59000 Powerball     g.mack@gmail.com 

Ira Curry        64800 Mega Millions ira.curry@gmail.com 

Mavis Wanczyk    75800 Powerball     mwanczky@gmail.com 

John Robinson    40000 Powerball     jrobinson@gmail.com 

Chevell Parker   50000 Pick 4        chevell.parker@aol.com 

Chevell Parker   10000 Cash 5        chevell.parker@aol.com 

; 

run; 

 

%macro mailit(name,email); 

filename mailer email to="&email"   

                      content_type="text/html"  

         subject="North Carolina Lottery Winners" 

         attach=("c:\temp\nclottery.png" inline="image1");  

 

ods msoffice2k file=mailer style=analysis rs=none; 

title1 j=l '<img src=cid:image1>'; 

title2 "^{style[url=""https://nclottery.com/""] North Carolina Lottery}";  

 

 



5 

 

proc report data=one(where=(name="&name" and email="&email")); 

column name amount_won type tax; 

compute tax;    

   tax_rate=.545; 

   tax=amount_won.sum*tax_rate;  

endcomp; 

run; 

ods msoffice2k close; 

%mend; 

 

proc sort data=one; 

by name; 

run; 

 

data _null_; 

  set one; 

  by name; 

     if first.name then 

       call execute('%mailit('|| name ||','|| email ||')');   

run; 

 

 Set the option EMAILSYS=SMTP, which indicates that the output is sent HTML. 

 Used the ATTACH= option included with the INLINE= option to specify that the image is embedded. 

 Referenced the image in the title statement using the CID. 

  Used the compute block to calculate the numbers that are shared. 

 Used the CALL Execute statement in the DATA step to pass each unique name and email to the 
    macro as a parameter, which is used to subset and mail each unique user. 

 

    
Output 4. Email generated using the EMAIL access method     

 
 

3. SAS AND OPEN SOURCE INTEGRATION    

The ability to integrate with third-party applications is necessary for any modern software application. SAS 
provides abundant ability to incorporate open source code. Table 2 displays a partial list of third-party 
applications that are integrated with the SAS®9 and SAS Viya platforms, focusing on the most-
downloaded application, Python: 



6 

 

Open Source Client Description Available 

SASPy Provides APIs for connection and analytics SAS 9.4+ 

SAS_Kernel for Jupyter Notebook Kernel used to add SAS to Jupyter notebook  SAS 9.4 

PROC FCMP- Python Objects Executes Python functions in SAS SAS 9.4+  

Python CAS API’s   Uses the SAS Scripting Wrapper for Analytics 
Transfer (SWAT) package for connection and 
analytics 

Viya 3x + 

R CAS API Uses the SWAT package for connection and 
analytics 

Viya 3x + 

PROC PYTHON Executes Python code from SAS Studio Viya 4 

Python Editor In SAS Studio Executes Python code in the Python Editor Viya 4 

SAS Configurator for Open Source Installs Python and R within a PVC Viya 4 

Viya Workbench A lightweight development environment that 
supports multiple programming languages and 
access to scalable cloud compute. 

Viya 4* 

PROC LUA Provides the ability to add LUA syntax in SAS SAS 9.4+ 

Table 2. Open-Source SAS integration 

 

CONNECTING TO SAS® 9.4 AND THE SAS® VIYA® SPRE 

The SASPy package provides the ability to connect to SAS 9.4 and a SAS Viya session using the SAS 
programming runtime environment (SPRE). This package contains various APIs that allow you to run your 
analysis using object-oriented Python syntax. In addition, APIs are available to show the SAS equivalent 
statements from the object-oriented Python code. The APIs for the SASPy package provide interfaces for 
the following: 

• starting a SAS session on the same host as Python or a remote host 

• exchanging data between SAS data sets and Pandas dataFrames 

• using familiar methods of Python to work with data 

• exchanging values between Python variables and SAS macros 

Before you connect, you must perform a very simple configuration step and then use the IDE of your 
choice to connect. Output 5 shows code and output for connecting to a local SAS session and running an 
analysis. 

https://sassoftware.github.io/saspy/
https://sassoftware.github.io/sas_kernel/overview.html#:~:text=A%20SAS%20kernel%20for%20Jupyter,highlighting%20for%20SAS%20programming%20statements
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lecompobjref/p18qp136f91aaqn1h54v3b6pkant.htm
https://sassoftware.github.io/python-swat/getting-started.html
https://developer.sas.com/guides/r.html
https://go.documentation.sas.com/doc/da/pgmsascdc/v_042/proc/n0asd2rsj9aedgn1828aptww56of.htm
https://communities.sas.com/t5/SAS-Explore-Presentations/Python-Integration-in-SAS-Studio/ta-p/838232
https://communities.sas.com/t5/SAS-Communities-Library/Using-the-SAS-Configurator-for-Open-Source-to-Build-Python-and-R/ta-p/842310
https://www.sas.com/en_us/software/viya/workbench.html
https://documentation.sas.com/doc/en/proc/9.4/p0lqta2cbq9b44n12h28nil7a093.htm
https://sassoftware.github.io/saspy/configuration.html


7 

 

 

  Output 5. Using the SASPy package to connect to SAS 9.4 

 

 Added the SASPy and Pandas packages as well as creates the sas connection object. 

 Created the cars SASdata object from the read_csv method, which reads the Cars CSV file. 

 The Type function is used to view the type of object which is a SASdata object 

 The means method in is combined with the head() method to summarize the data and display the first 
2 records. 

  The carsdf object was created as a result of using the to_df method creating a python dataFrame . 

 

CONNECTING TO THE CAS SERVER  

The Python CAS API uses the SWAT package to connect to the CAS server. In addition to providing the 
connection information, this package contains all the APIs and methods needed for your analysis. The 
Python CAS API allows you to generate your analysis using object-oriented syntax similar to the SASPy 
package. When connecting to the CAS server, you can use either native REST or binary protocol. A 
binary connection is fastest because it uses C extensions. Analysis performed using the Python CAS API 
uses CAS actions. 

An action is a task performed by CAS at the request of the user that returns a response containing results 
and status. Actions can load data, manage tables, perform analytics or statistics, and more. If you are 
familiar with SAS®9, you can think of an action as a SAS procedure on steroids. The connection string 
below specifies a host, protocol, port, and the username and password needed to connect to the CAS 
server: 

 conn=swat.CAS('Host-name',port,"username","password",protocol) 

 

 



8 

 

For increased security, you can move the username and password from connection string to an 
AUTHINFO file that stores the credentials. You can then point to the file in the connection string with the 
AUTHINFO= option. Another authentication method is to specify a token with the PASSWORD= option 
and the username set to none.  

Output 6 contains code that connects to the CAS server from Python using Jupyter notebook and shows 
the output that is produced. 

Output 6. Using the Python CAS API 
 

 Imported the packages, such as the SWAT and OS, that are needed for the example. 

 Applied the CAS_CLIENT_SSL_CA_LIST environment variable using the trustedcerts.pem file. 

 Created a CARSTable Object using the read_csv method. 

 Added the Describe() method to the TBL data object. 

PROC PYTHON AND THE SAS STUDIO PYTHON EDITOR 

The ability to run PROC PYTHON code directly from SAS Viya is a beneficial enhancement from the 
integration of Python and SAS. In addition, a Python editor has been incorporated in SAS Studio that 
adds generated code within PROC PYTHON. This enhancement has quite a few benefits as you run 
Python code directly from SAS Studio and exchange data between Python dataFrames and SAS data 
sets. Other enhancements are the ability to exchange text using macro variables and using callback 
functions and Python integration with SAS flows. 

There are two different methods to execute code using the PYTHON procedure. The first method is to 
use the INFILE= option in the PROC PYTHON statement, which executes the code from SAS. The 
second method is to use PROC PYTHON with the SUBMIT and ENDSUBMIT statements and add the 
Python code in between, as shown in Example 7A. For a method and APIs to modify XLSX files, see 
openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files. After modifying files using PROC 
PYTHON, you will never see PROC EXPORT the same. 

Example 7A demonstrates reading an Excel file and copying the table to SAS using the SAS callback 
method. 

 

 

https://go.documentation.sas.com/doc/en/pgmsascdc/v_017/authinfo/n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
https://openpyxl.readthedocs.io/en/stable/


9 

 

Example 7A 

proc python; 

submit; 

import pandas as pd 

print("Inside Python") 

carsds = pd.read_excel("/srv/nfs/compute/home/sasctp/cars.xlsx")  

ds = SAS.df2sd(carsds, 'work.cars')  

endsubmit; 

run; 

 

 Used the PRINT function with text that prints a message from within Python. 

 Created the carsds dateFrame from the cars.xlsx file using the read_excel method. 

 Used the SAS callback method to copy the carsds dataFrame to SAS. 
 

Example 7B uses the openpyxl package to update an existing XLSX file that was created with PROC 
EXPORT, add methods to freeze columns and rows, and add outlines, tab colors, images, and 
protections. Output 7 shows what this code generates. 

Example 7B 

/* Create PROC Export output to update */ 

proc export data=sashelp.class  

  outfile="/srv/nfs/compute/home/sasctp/Sample.xlsx" 

  dbms=xlsx 

  replace; 

  sheet="Sample";   

run; 

 

/* Update the XLSX file */ 

proc python; 

submit; 

from openpyxl import load_workbook;  

from openpyxl.drawing.image import Image 

wb=load_workbook('/srv/nfs/compute/home/sasctp/Sample.xlsx') 

ws=wb.active 

ws.freeze_panes='A2' 

ws.freeze_panes='B2' 

ws.row_dimensions.group(1,10) 

ws.sheet_properties.tabColor = "1072BA" 

img=Image("/srv/nfs/compute/home/sasctp/SGPlot2.png") 

ws.add_image(img,'G2') 

wb.save('/srv/nfs/compute/home/sasctp/Sample_update.xlsx') 

endsubmit; 

run; 

 

 Adds the openpyxl and other packages that are needed for the example. 

 Creates the wb workbook object and ws worksheet object from the workbook and loads the active  
     worksheet from PROC EXPORT. 
 
 Applies various methods such as freeze_panes, group, tabColor, add_image to the worksheet  
     object (ws). 
 Adds the save method to the workbook object (wb), saving the updated file. 
 



10 

 

Output 7. Using PROC Python to update an XLSX file 

4. MANAGING DATA IN CAS 

SAS Viya is a cloud-enabled, in-memory analytics platform that provides quick, accurate, and reliable 
analytical insights. SAS Viya is able to run your analysis in the cloud by connecting to the CAS server. 
Once connected to the CAS server, you can use the CASL programming language, which is a new 
programming language that is understood by the CAS server. Although you can use the CASL language, 
some unsupported features might prevent the code from running on the CAS sever and run it in SAS 
instead. You can use the MESSAGELEVEL=I option to determine where the code runs. 

CLOUD ANALYTIC SERVICE HIGHLIGHTS 

CAS exploits the scalability of cluster computing and solves analytical problems with large volumes of 
data and so is more suited to the cloud than SAS®9. Here are some CAS server highlights: 

• Data is transmitted to and from the CAS server and stored data is secure. 

• The CAS server is multi-threaded for high-performance analytics. 

• The CAS server processes in-memory tables, which can come from a variety of sources.  

• Open-source clients (Python, Lua, Java, R, REST API languages) connect to the CAS server. 

• You can use the new high-performance SAS Viya procedures, SAS Procedures, the DATA step, 

and CAS actions to run your analysis in CAS. 

Programmers can invoke CAS sessions from the client of choice, such as Jupyter Notebook or SAS 

Studio. Figure 1 CAS server architecture when running in massively parallel processing (MPP) mode: 

 

Figure 1. Cloud Analytic Service Concepts 

THE CASUTIL PROCEDURE 

The first step to running your analysis is to import your data into SAS, which you can do with various 
clients. In SAS Studio, you can easily manage data in CAS with the CASUTIL procedure, which manages 
tables in the CAS environment using a lightweight approach that feels familiar to SAS programmers. The 
CASUTIL procedure can load, drop, save, and describe CAS tables and works with tables in CAS, SAS 

Frozen_Headers Image 

Image 



11 

 

data sets in SAS libraries, and external files. You can also use other methods to load tables, such as the 
LoadTable CAS action with PROC CAS, the CAS Libname engine, and the DATA step, and a log file will 
be generated similar to Output 8. 

Example 8 

Cas casauto sessionopts=(caslib=casuser timeout=1800 locale="en_US");  

proc casutil; 

     load data=sashelp.shoes  casout="shoes";  

     promote casdata="shoes" incaslib="casuser";  

     save casdata="shoes" ;  

     list tables; 

quit; 

 

 Added the CAS statement to start the CAS server with some session options. 

 Used the CASUTIL statement using the LOAD statement to upload SAS data sets to the CAS server. 

 Used the PROMOTE statement to promote the CAS table with a global scope. 

 Used the SAVE statement to save the Shoes CAS table to the casuser caslib in the SASHDAT format. 

 
Output 8. Log file that is generated 

5. PROC REPORT  

The REPORT procedure is the most powerful of the reporting procedures within SAS that contains a lot of 
functionality. Table 3 lists some of the main statements in PROC REPORT: 

Statement Description 

Column Specifies which columns are added to the report  

Define Defines how to use and display report items  

Compute Computes new columns or modify existing columns  

Break Adds a summary before/after an order or group variable to the left of the break variable  

Rbreak Adds a summary either at the beginning or end of a report or by-group 

Table 3. PROC REPORT statements 
 

THE COLUMN AND DEFINE STATEMENTS 

The COLUMN statement defines which fields are included in the report as well as how they are arranged. 
The statement can include computed variables that are not a part of the input data. The COLUMN 
statement also defines the layout of the headers, such as adding spanning headers that span one or 
more columns. If no columns are added to the COLUMN statement, all columns are used by default. 



12 

 

The DEFINE statement describes how to use a column, specifies style attributes for a column, and 
supplies options for a column. Some usages that you can add for a column are Display, Order, Group, 
Computed, and Analysis. The usage applied to a column does everything from collapsing the values of a 
group to transposing or applying statistics to a column. The usages of Order and Group can also be used 
with the BREAK statement to generate summaries before or after similar values, or after the entire report. 
Example 9 demonstrates how to use these statements to generate output similar to Output 9. 

Example 9 

proc report data=sashelp.cars(where=(mpg_city > 25 and  

Make in("Chevrolet", "Dodge"))) style(header)={backgroundcolor=black  

                                               Color=white}; 

column Make ('Luxury Car Prices' (MSRP Invoice ));   

define make / order style(column)={backgroundcolor=lightgray};  

define model / left order style(column)={color=gray bordercolor=red}; 

define msrp / mean; 

define MPG_Highway / noprint;  

define mpg_city / mean format=8.0; 

break after make / summarize style={bordertopwidth=5pt 

borderbottomwidth=5pt bordercolor=black};  

rbreak after / summarize style={borderbottomwidth=5pt bordercolor=black}; 

run; 

 

 The COLUMN statement includes the Make, MSRP, and Invoice fields along with a spanned header. 

 The Color= and Backgroundcolor= style attributes are added for the Make and Model fields. 

 The NOPRINT option is added for the MPG_Highway column, which prevents it from being displayed. 

 The BREAK statement and RBREAK statement add a summary after each group and overall. 

 

                                                                                                                      
Output 9. COLUMN and DEFINE statements of PROC REPORT 

COMPUTE BLOCK 

Although extremely powerful, the compute block is also complex. The compute block can create new 
columns, inset lines of text, control placement of text, and use many of the same SAS Language 
statements that are used in the DATA step. The style generation capabilities of the compute block are 
limitless. Another powerful feature of the compute block is the CALL DEFINE statement, which can be 



13 

 

used to set or modify the style, format, or URL of a row, column, or individual cell. Example 10 shows 
using the compute block to add traffic lighting and add text to the summary line, as shown in Output 10.  

Example 10 

     proc format; 

  value price_mpg 0-<28="#3399FF" 

                 28-<30="#3333FF" 

                 34-<37="#9933FF"  

       37-<40="#FF33FF" 

           10000-<11000="#FF5733" 

           11000-<13000="#FFBD33" 

      13000-<15000="#DBFF33" 

      15000-<18000="#75FF33"; 

  run; 

proc report data=sashelp.cars(where=(mpg_city > 25 and  

Make in("Chevrolet", "Dodge"))) style(header)={backgroundcolor=black  

                                               Color=white}; 

column Make model ('Luxury Car Prices' (MSRP Invoice )) ('Miles Per 

Gallon'(MPG_City MPG_Highway)) ;   

define make / order style(column)={backgroundcolor=lightgray};   

define msrp / mean; 

define invoice / mean; 

define MPG_Highway / mean; 

define MPG_City / mean;   

break after make / summarize style={bordertopwidth=5pt borderbottomwidth=5pt 

};   

rbreak after / summarize style={borderbottomwidth=5pt }; 

 

compute MPG_Highway;  

array temp{*} msrp invoice MPG_City MPG_Highway;  

  do i=1 to dim(temp); 

  call define(cat(vname(temp{i}),".mean"),"style",  

      "style={backgroundcolor=price.}"); 

 end; 

endcomp; 

 

compute after;  

 make="Total"; 

endcomp; 

run; 

 

 Added the COMPUTE statement for the MPG_Highway variable. 

 Created an array for the numeric columns in the report.  
 Used the CALL DEFINE statement with the VNAME function to get the column name of the columns in         
the array concatenated with the Mean statistic. The BackgroundColor= style is added along with the 
format to add the traffic lighting. 



14 

 

  
 Output 10. Compute block of PROC REPORT 

6. GENERATING REST API REQUEST FROM SAS 

The most popular type of API currently is REST API because of its flexibility. REST stands for 
Representational State Transfer and defines a set of functions like GET, PUT, DELETE, POST, etc. that 
clients can use to access server data. With Rest APIs, both the clients and servers exchange data using 
HTTP. Some of the benefits of a REST API include the following: 

1. They are fast, and lightweight which is necessary for mobile apps, Internet of Things devices.  

2. They are independent because the client and the server are separate. 

3. They are both scalable and flexible. 

4. They are stateless, which means that servers do not save client data between requests. 

The method is the type of request that you send to the server. The four main resource methods that are 
associated with REST APIs are shown in Table 4: 

GET This method allows the server to find the data you requested and send it back to you. 

PUT  This method updates an entry on the server 

POST This method permits the server to create a new entry on the server. 

DELETE This method allows the server to delete an entry.  

Table 4. Common REST resource methods 

 

PROC HTTP AND REST 

As mentioned earlier, HTTP is simply a way for clients and servers to communicate. Every time you enter 
a URL into a browser, a GET request runs and returns the information to the browser (client). When using 
PROC HTTP, the procedure is the client rather than the browser. This process is the same for any other 
client that uses REST, such as the cURL application, Postman, and Swagger, which are all good tools to 
test your API. 

REST APIs that are available to the public always have accompanying documentation, which specifies 
how to implement the API and its components. The documentation also includes information about how to 
consume the API endpoints and authentication requirements. See the HTTP Procedure for the 
authentication methods available to PROC HTTP. Communicating with SharePoint via an API is a 
common task for SAS programmers which can be done using the PROC HTTP procedure. 

 

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/proc/n197g47i7j66x9n15xi0gaha8ov6.htm


15 

 

THE LOCATION URL 

The location of the server is identified with the URL, which is composed of the base endpoint, path query, 
and fragments as shown in Display 1: 

. 
Display 1. Location URL components 
 

Example 11 uses the Query parameters API documentation for the OpenFDA API to determine how to 
structure the query and generates output similar to Output 11. 

Example 11 

filename resp temp; 

proc http        

  url="https://api.fda.gov/food/enforcement.json?search=state:'FL'  

  &limit=10" 

  method="get"  

  out=resp; 

run; 

 

libname resp json;  

proc print data=resp.results; 

run;  

 

 Specified the METHOD= option with the default GET.  

 Specified the URL= with the endpoint, which is required to query the information along with the  
    query parameters.  
 Used the JSON engine to read the data into SAS. 

 

Output 11. SAS data set generated from the response file 

7. READING POPULAR FILE FORMATS WITH SAS 

Every SAS programmer must read files of various formats and from an endless number of data sources. 
Data sources could involve database tables such as Oracle that have access engines, or those that do 
not but might require the use of an ODBC driver. Other data sources, such as Excel or SPSS files, are 
read using PROC IMPORT. This section focuses on some popular file formats and how to read or import 
them into SAS.  

MICROSOFT EXCEL 

The Excel XLSX file format is read into SAS using either the Excel LIBNAME engine, PROC IMPORT, or 
the Import Wizard with the SAS Display Manager (DMS) and SAS Enterprise Guide. This format requires 
a license for the SAS/ACCESS® Interface to PC files product. Example 12 demonstrates using the PROC 
IMPORT procedure to import an XLSX file and create SAS data set from it. The DBMS= option specifies 
the application format, such as XLSX, CSV, or SPSS. 

https://open.fda.gov/apis/query-parameters/


16 

 

Example 12 

proc import datafile="C:\temp\heart.xlsx"                                   

out=work.heart                                                             

dbms=xlsx                                                                

replace;                                                         

sheet="Sheet1";                                                   

getnames=yes;                                                              

run; 

 
 Used PROC IMPORT to import the XLSX file using the DATAFILE= option 

 Used the DBMS=XLSX option to import Excel 2007 and later files in the XLSX format. 

 The sheet name has been specified to read. 
 

THE JSON AND XML FORMATS 

Both JSON and XML are popular formats used for web-based exchanges. These file formats are used in 
a variety of ways, such as formats returned from a web service, used as configuration files, or simply as a 
method of transporting data. These files are more descriptive than some of the previous file formats used 
for transporting data, such as CSV. Display 2 shows an example of both a JSON and an XML file. The 
JSON format is made up of value pairs, whereas the XML is more structured and made up of tags: 

 

Display 2. Example of a JSON file and an XML file 

The JSON file format can be read using the JSON LIBNAME engine in SAS, whereas the XML file format 
can be read using the XMLV2 engine. The JSON and XMLV2 LIBNAME engines use some defaults, such 
as numbers are always read into SAS as a numeric data type. To modify any of the metadata such as the 
data types, column lengths, formats/informats, you can generate a map file (a SAS specific file). You can 
generate the map file dynamically using the XMLMAP= option with the AUTOMAP=REPLACE. You can 
also use the XML Mapper, which is a standalone Java application, to interactively generate map files for 
XML. The map file can describe how to make rows and columns from the data. Example 13 demonstrates 
reading data using the JSON LIBNAME engine. 

Example 13 

proc json out="c:\temp\class.json" pretty;  

  export sashelp.class; 

run;  

Libname input json "c:\temp\class.json" map="c:\temp\class.map" 

automap=create;  

proc copy in=input out=work; 

run; 



17 

 

 Used PROC JSON to generate a JSON file from the SASHELP.CARS data set.  

 Used the JSON LIBNAME engine to read the JSON file and also generate a map file dynamically. 
 

SAS TRANSPORT FILES 

Several types of SAS transport files, such as the V5 and V8 formatted files and transport files, are created 
with PROC CPORT. The V5 transport files are created and read using the XPORT LIBNAME engine. V8 
transport files are created and read using the %LOC2XPT and %XPT2LOC macros respectively. The V5 
and V8 transport file format only move SAS tables; however, PROC CPORT can move entire libraries and 
is used frequently to migrate or backup libraries. PROC CIMPORT restores the transport files created 
with PROC CPORT. 

If you want to know which format was used, you can view the file in a text editor and see how the layout is 
different, as illustrated in Example 14. The left side shows Version 8 transport files created using the 
%LOC2XPT macro and read using the %xpt2loc macro. The right side shows PROC CPORT and PROC 
CIMPORT being used to create and restore SAS transport files. 

Example 14 
 
%loc2xpt(libref=sashelp,   

        memlist=class, 

        filespec='c:\trans.v9xpt') 

%xpt2loc(libref=work,      

        memlist=class,  

        filespec='c:\trans.v9xpt'); 

 

filename trans 'c:\transport.stc'; 

proc cport file=trans lib=sashelp; 

select class; 

run; 

 

proc cimport 

infile="c:\transport.stc" lib=work; 

run; 

USING THE ZIP ACCESS METHOD IN SAS 

The ability to read ZIP files has been simplified by the addition of the ZIP access method. Prior to the ZIP 
access method, reading ZIP files typically involved interacting with the operating system. The ZIP access 
method reads and writes only files created with the WinZip file compression tool. Example 15 shows a 
practical use of the ZIP access method to extract files using the DATA step: 

Example 15 

ods package(newzip) open nopf;  

ods package(newzip) add file="c:\temp.csv"; 

ods package(newzip) publish archive 

  properties( 

   archive_name="cars.zip" 

   archive_path="c:\output" 

  ); 

ods package(newzip) close; 
 
filename foo "c:\output\cars.zip"; 

data _null_;  

infile foo(temp.csv); 

input a $80.; 

put _infile_; 

run;  
 
 Used the ODS Package to create a ZIP file from the temp.csv file. 

 Used the DATA step to read the temp.csv file from the ZIP archive. 
 



18 

 

8. AUTOMATING SAS CODE USING MACROS 

SAS macros are a tool used for text substitution, which is used to automate SAS code. Macros are useful 
when you need to generate repetitive syntax. Macros are a broad topic, so this paper focuses on key 
concepts. Some features in the macro facility include creating macro variables, generating reusable code, 
dynamic macro variable generation, and macro variable scope. 

CREATING MACRO VARIABLES 

Table 5 shows a few methods for creating macro variables using the SAS language. It is important to 
know the scope of the macro variables, such as when and where they are available. Macro variables are 
added to either the global or local symbol tables. In general, macro variables that are generated inside of 
a macro are local to the macro. Use the %PUT _GLOBAL_ to see what the global symbol table contains.  

%LET Statement The %LET statement assigns text to a macro variable 

CALL SYMPUT Statement   Assigns a DATA step variable values to a macro variable 

INTO:  Clause Creates one or more macro variables based on a SELECT statement 

Macro Parameters Creates local macro variables whose values are specified when invoked  

%GLOBAL statement Creates global scope macro variables available for the duration of the session 

%LOCAL Statement Creates local scope macro variables available for the duration of the macro 

Table 5. Creating macro variables 
 

Example 16 demonstrates how to generate reusable code that can create output such as Output 12. 
 
Example 16 

%let make=Audi;  

%let type=Sports; 

 

 proc print data=sashelp.cars; 

 where make="&make" and    

       type="&type"; 

 title "Report Generated 

&sysdate"; 

 run; 

 

 
Output 12. SAS macro and reusable code

 Created reusable code by setting macro variables at the beginning of the program using the %LET  
    statement. 

 Used the WHERE statement with the Make and Model macro variables to subset the code. 

 

GENERATING REPETITIVE CODE  

You can generate repetitive code several ways using the macro language. One method uses the INTO 
clause within the PROC SQL procedure by creating a series of macro variables and resolving them within 
a macro %DO loop. 

Example 17 creates a macro variable list from the distinct values of the variable TYPE in PROC SQL 
using the INTO clause. The TOTAL macro variable is created getting the count of unique values of the 
variable count. 

Example 17 

   proc sql; 

    select count(distinct type) into:total  



19 

      from sashelp.cars; 

    select distinct(type) into:type1-:type%trim(%left(&total))  

      from sashelp.cars; 

   quit; 

 

 %macro cars; 

 %do i=1 %to &total;  

    proc print data=sashelp.cars; 

    where type= "&&type&i"; 

    run; 

%end; 

%mend; 

%cars 

 

 Macro variable Total generated from the distinct values of the variable type using the INTO clause. 

 A macro variable list with all of the distinct values of the variable type is generated dynamically using 
the INTO clause of PROC SQL. 

 Used the Macro %DO loop to loop through all the macro variables, creating a new table for each  
    distinct type. 

THE CALL EXECUTE ROUTINE 

Using the CALL EXECUTE routine provides the ability to pass values directly from the DATA step to the 
macro as a parameter. This technique is valuable and is used in multiple examples in this document.  

Example 18 

        

 %macro cars(type);  

      proc print data=cars; 

 where type="&type"; 

      run; 

   %mend; 

 

   proc sort data=sashelp.cars out=cars; 

   by type; 

   run; 

 

data _null_;   

    set cars; 

    by type; 

      if first.type then call execute('%cars('||type||')'); 

  run; 

 

 The macro is defined with a single positional parameter named TYPE.  
     

 The invocation of the macro CARS passes each distinct value of the variable TYPE as a parameter. 

9. CREATING GRAPHICS IN SAS 

ODS Graphics are template-based graphics that were introduced in SAS®9. Before ODS Graphics, you 
had to use SAS/GRAPH® to generate graphics within SAS, which was device based. Some of the 
highlights of ODS Graphics are the innate ability to interpret the data and to generate graphics on the fly 
from most statistical procedures. Graphics can be generated from statistical procedures if the ODS 
Graphics preference is turned on, which is the default. ODS Graphics are made up of the Graphics 
Template Language (GTL) and the Statistical Graphics (SG) procedures. Example 19 demonstrates using 



20 

PROC REG to generate the graphics shown in Output 13. 

Example 19 

Ods select FitPlot; 

proc reg data = sashelp.cars; 

    model msrp =invoice; 

run; 

     
Output 13. Graphics created from PROC REG 

 

THE STATISTICAL GRAPHICS PROCEDURES 

The SG procedures are an extension of the ODS Graphics framework, providing access to the GTL in the 
familiar syntax of the SAS/GRAPH procedures. The SG procedures include PROC SGPLOT, PROC 
SGPANNEL, and PROC SGSCATTER. There is also PROC SGRENDER, which renders graphics 
generated using the GTL. This paper examines some basic functionality of ODS Graphics.  

The SGPLOT procedure contains many statements that can be used based on the type of graph 
required. For example, the SCATTER statement is used to create a scatter plot. There are other 
statements, such as the HISTOGRAM statement, which generates histograms; the DENSITY statement, 
which generates density plots; and the VBAR and HBAR statements generate vertical and horizontal bar 
charts. A bar chart plots numeric values for levels of a categorical feature as bars. Bar charts are used 
when you want to show a distribution of data points or perform a comparison of metric values across 
different subgroups of your data. The primary variable of a bar chart is its categorical variable. Example 
19 uses bar charts to view the SASHELP.SHOES table, as shown in Output 14. 
 

Example 19 

ods graphics / height=3in width=5in imagefmt=jpeg ;  

 

PROC SGPLOT DATA = sashelp.shoes ;  

 VBAR Region / stat=sum response=sales;  

run;  

 



21 

 Added the height, width, image format, and image name using the ODS Graphics statements. 

 Used the VBAR statement to look at sales by region within the SASHELP.SHOES table. 

 

          

           Output 14. PROC SGPLOT using the VBAR statement. 

10. SCHEDULING SAS VIYA JOBS IN SAS STUDIO 

One of the many powerful features of the SAS Viya platform is the ability to create and schedule SAS 
Viya jobs, which consist of a program and a definition that executes on the compute server. The definition 
includes items such as the author, the job name, a creation date, and time. SAS Viya jobs are similar to 
stored processes on SAS®9; however, SAS Viya does not have a metadata server. Some commonalities 
are that both enable you to stream output and create amazing web applications.  

CREATING SAS VIYA JOBS 

To create a SAS Viya job, from the menu items at the top of the window, select New > Job, which 
expands to display the values Definition, HTML form, and Task prompt as seen in Display 3.  

• Definition is the SAS code which is executed on the compute server.  

• HTML form builds dynamic web content that gives you the ability to select parameters that are used 
to determine the results.  

• Task prompt takes advantage of the SAS Studio Common Task Model and is flexible in the type of 
prompts generated, including the dynamic content using data value.   

 

  Display 3. Creating Viya Jobs 



22 

See the Create a SAS Viya Job with a prompt using HTML Prompts article for more detail. There are 
many benefits to adding a dynamic front end to the job. When the job is executed, the form is displayed 
first, which uses the selected parameters to add to the job. 

SAS Viya jobs can be executed using a variety of methods, such as SAS Studio, command-line interface 
(CLI), REST API, Job Execution Web app, and a few others. Once the job is created, a URL can be sent 
to others who can also execute the job if they are in the authenticated group. The SAS Viya platform adds 
the ability to add guest access similar to a feature in the SAS®9 stored processes. To get the link for the 
job, go to job properties on the right side of the window and click the item to show the URL on the bottom 
right. 

SCHEDULING SAS JOBS 

There are a few methods to schedule capabilities for SAS Viya jobs, such as SAS Studio, SAS Job 
Execution Web App, SAS Environment Manager, and the CLI. You can choose different methods based 
on your needs. Each of the methods mentioned uses the Job Execution Microservice or the scheduling 
microservice. This paper describes using SAS Studio for scheduling. 

SAS Studio 

When you schedule a job, SAS Studio creates a snapshot of the program. Any subsequent changes to 
the program are not reflected in the scheduled job. To incorporate any program updates, you must 
schedule a new job by completing these steps: 

1. In Explorer, right-click the name of the job definition, and select Schedule as a job as shown in 
Display 4. 

2. In the New Trigger window, specify how frequently to run the job. You can also specify the time at 
which the job should run and the start and end dates for running the job. 

 

Display 4. Scheduling SAS Viya Jobs using SAS Studio 

 

CONCLUSION 

You have finally made it to the end of the top ten features from the perspective of a Technical Support 
guy! The list includes impactful reporting features that allow you to generate presentational quality Excel 
reports and email them using SAS. It also includes automating SAS code using the SAS macro language 
in addition to the integration of open-source languages. Finally, managing data in the CAS server or 
scheduling SAS Viya jobs adds additional impact when working within the SAS Viya platform. Hopefully, 
some of the features mentioned in this paper will be helpful in your daily work as an impactful SAS 
programmer. 

 

 

https://communities.sas.com/t5/SAS-Communities-Library/Create-a-SAS-Viya-Job-with-a-prompt-using-HTML-Prompts/ta-p/805091


23 

REFERENCES 

OpenFDA. 2023. “Query parameters.” Available at open.fda.gov/apis/query-parameters/.  

OpenPyXL. 2023. “openpyxl - A Python library to read/write Excel 2010 xlsx/xlsm files.” Available at 
openpyxl.readthedocs.io/en/stable/.  

SAS Communities Library. 2022. “Create a SAS Viya job with a prompt using HTML Prompts.” Available 
at communities.sas.com/t5/SAS-Communities-Library/Create-a-SAS-Viya-Job-with-a-

prompt-using-HTML-Prompts/ta-p/805091. 

SAS Institute Inc. 2022. “Client Authentication Using an Authinfo File.” SAS®  Viya® Programming 
Documentation. Cary, NC: SAS Institute Inc. Available at 
go.documentation.sas.com/doc/en/pgmsascdc/v_017/authinfo/n0xo6z7e98y63dn1fj0g

9l2j7oyq.htm. 

SAS Institute Inc. 2023. “HTTP Procedure.” SAS® 9.4 and SAS®  Viya® 3.5 Programming Documentation. 
Cary, NC: SAS Institute Inc. Available at 
go.documentation.sas.com/doc/en/pgmsascdc/v_017/authinfo/n0xo6z7e98y63dn1fj0g

9l2j7oyq.htm. 

SAS Institute Inc. 2018. “SASPy Configuration.” Available at 
sassoftware.github.io/saspy/configuration.html.  

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the author at: 

Chevell Parker  
SAS Institute Inc. 
SAS Campus Drive 
Cary, NC 27513 
Email: support@sas.com 

Web: support.sas.com/en/support-home.html 

 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 

https://open.fda.gov/apis/query-parameters/
https://openpyxl.readthedocs.io/en/stable/
https://communities.sas.com/t5/SAS-Communities-Library/Create-a-SAS-Viya-Job-with-a-prompt-using-HTML-Prompts/ta-p/805091
https://communities.sas.com/t5/SAS-Communities-Library/Create-a-SAS-Viya-Job-with-a-prompt-using-HTML-Prompts/ta-p/805091
https://go.documentation.sas.com/doc/en/pgmsascdc/v_017/authinfo/n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
https://go.documentation.sas.com/doc/en/pgmsascdc/v_017/authinfo/n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
https://go.documentation.sas.com/doc/en/pgmsascdc/v_017/authinfo/n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
https://go.documentation.sas.com/doc/en/pgmsascdc/v_017/authinfo/n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
https://sassoftware.github.io/saspy/configuration.html
mailto:support@sas.com
https://support.sas.com/en/support-home.html

