PharmaSUG 2024 — Paper HT-143

The New Shape of SAS® Code
Charu Shankar, SAS® Institute Inc.

ABSTRACT

What is SAS Code? How many SAS languages exist to manipulate data? If these questions got you
thoughtful, then this presentation is just for you.

Come explore the many dimensions of SAS code, the commonality and differences between the various
languages in SAS.

this presentation you will learn the basics of 4 familiar SAS languages, like the Base SAS data step,
PROC SQL, PERL language elements, the SAS Macro language plus a 5th, an introduction to the language
of CAS(cloud analytic services).. Learn to check your data with elegant techniques like Boolean logic in
PROC SQL, operators in the DATA step/PROC step, functions like the SCAN function within the DATA
step, efficient checking of your data with PERL regular expression, and last but not least the amazing
marriage between PROC SQL & the SAS macro language to reuse data. You will also learn where CAS
can be beneficial for manipulating data in the clou. . This presentation will focus on coding techniques
for data investigation and manipulation using Base SAS & SAS Viya.

DATA USED IN THIS PRESENTATION

Sashelp.demographics The Sashelp.demographics data set provides the 2004 revision of data
derived from world population prospects. The data set contains 197
observations.

Sashelp.mwelect The Sashelp.mwelect data set provides midwest electrical supply monthly
sales by product group. The data set contains 11,296 observations.

Pflugerville Code to build the dataset is provided in the References section of this
paper

Table 1. Details about the data sets used in this Hands-on workshop.

INTRODUCTION

When the author set out to share the power of different languages in the SAS® toolkit, her initial
targeted audience was the novice user. What she didn’t fully realize was the value of this topic to
experienced users as well. For example, there is value to the user who came up to the author after her
presentation to share that they were now able to view PROC SQL with a Boolean angle, and the

advanced user also benefitted by learning about PERL regular expressions in SAS. Clearly, this paper
won’t be able to teach you every single nuance of these majestic languages in the short timeframe of a
hands-on workshop. The purpose of this paper is to synthesize & distill each language to its best
strengths. Whether you are a novice user or an experienced SAS coder, the hope is for you to get
something new out of this paper. Comments and feedback are always appreciated.

The goal of this Hands-on workshop is to understand the shape of 4 SAS’ languages. Four business
scenarios have been developed in this Hands-on workshop to practice the four SAS® languages:

Business Scenario 1 — Using the most misspelled city in Texas, this scenario will discuss the fundamental
concepts of the SAS data step and how to filter data using the WHERE clause with the Sounds-like
operator and the Contains Operator. It will also reveal where the sounds-like operator works well and
where the contains operator may be a better fit.

Business Scenario 2 — Using the SASHELP. Mwelect dataset, this scenario will discuss how to find a
pattern using the language of Perl.

Business Scenario 3 — Using the SASHELP. demographics dataset, this scenario will discuss how to create
a macro variable to find the country with the highest population in 2004.

Business Scenario 4 — Using the SASHELP. demographics dataset, this scenario will discuss how to use
Boolean logic in PROC SQL to obtain population range counts by region.

Business Scenario 5 — Using PROC CAS, to create a dictionary object similar to a python dictionary.

REVIEW OF SAS PROGRAMS

A SAS program is a sequence of one or more steps.

DATA steps typically build and manipulate SAS data sets. So, we can reference the DATA step as the
Builder. Keeping the building capability in mind helps while writing data step code as the executable
statements are, for the most part processed in sequence.

PROC steps typically process SAS data sets to generate reports and graphs, and to manage data. So, we
can reference the PROC Step as the Analyzer. Keeping the analytic capability in mind helps while writing
PROC steps as the order of statements is usually not important.

DATA ; PROC
" step [TTEccE T STee

= H=EE)

Figure 1. The role of the DATA STEP vs the PROC STEP

DATA EXTRACTION TOOL — LIBRARY TO READ SAS DATASETS

A SAS data library is a collection of one or more SAS files that are recognized by SAS and can be
referenced and stored as a unit. A library is simply an alias, a pointer or a reference pointing to a

physical location on your computer, e.g., a folder on your C drive.

LIBNAME Iibref engine "path";

i

4

Library name

Data Type

T

¢ eight-character maximum

e starts with a letter or
underscore

e continues with letters,
numbers, or underscores

Other engines such as
Oracle, Teradata,
PostgreSQL, etc.

Data Location

Figure 2. The Libname Statement

Libname Code
libname Pharmasug24 "&path”;

1. SHAPE 1 - THE SAS DATA STEP — THE MANIPULATOR

BUSINESS SCENARIO 1 - FIND ALL PFLUGERVILLE RECORDS

You have been tasked to find all records for the city of Pflugerville in Texas. However, there’s a small

problem. The city’s name is so misspelled. How can you filter your data?

Figure 3. Map of Texas with Pflugerville

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

USING THE DATA STEP TO CREATE A SAS DATASET

The Data Step is a powerful tool to create, clean, and prepare your data. These are some of the tasks it
can perform:

e Filter rows and columns
e Compute new columns

e Conditionally process data

DATA output-table;
SET input-table;
RUN;

Figure 4. Data Step Code

FILTER DATA WITH THE WHERE CLAUSE

The WHERE expression defines the condition (or conditions) for selecting observations.

WHERE WHERE-expression;

Operands —-— —ap- Operators

m character constants = symbols that represent a
® numeric constants comparison, calculation,
= date constants or logical operation

m character variables

® numeric variables

= SAS functions
= special WHERE operators

Figure 5. The Where Expression

THE SOUNDS LIKE OPERATOR

The sounds-like operator =* is very useful when fuzzy matching of character values is needed. It
matches character strings based on their phonetic values. The sounds-like operator is based on the
SOUNDEX algorithm for identifying words that sound alike.

Data step Code

daa citytypo;
set pharmasug24.citysoundslike;
where city=*'Pflugerville’;
run;

Data step Results

1 saza
2 2222 bbbb
3 (3333 cooc
4 4444 dddd
b | 5555 S

A studentld & MName b city

ploogervile
Phlugerville
plugemville
Phloogerville

Plugerville

2 RHHRe

However, the sounds like operator does not work in every instance. Observe what happens when we try
to find all students named John in the SASHELP.CLASS data set.

Data Step Code

data pharmasg24.john;
set sashelp.class;
where name =*'John';

run;

Data Step Results

1 |Jane F
2 |John M
THE SOUNDEX ALGORITHM

Age (@ Height (@ Weight
12 59.8 4.5
12 59 99.5

Why did our search for John return Jane as well? Consider the Soundex Algorithm. Soundex is an
indexing system that translates a name into a 4-digit code. The advantage of Soundex is its ability to
locate names by the way they sound, rather than by exact spelling.

Code Letter
1 BFPV
2 CCGJKQSXZ
3 DT
4 L
5 M N
6 R

No code |AEHIOUYW

Figure 6. The Soundex Algorithm Chart

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The steps used by SOUNDEX to derive the phonetic equivalent of a character string are as follows:

a) Retain the first letter of the character string.
b) Discard the letters AEHIOUWY.
c) Assign a numeric value to the following consonants:

1.

ukwnN

6.

BFPV
CGJKQSZ
DT

L

MN

R

d) Discard all duplicate classification values if they are adjacent. That is, DT results in a single value
of 3, and NN results in a single value of 5).

Here is the answer to our puzzle as to why a search for John pulled up Jane as well.

JOHN Soundex JANE Soundex
J J J J

(0] discarded A discarded
H discarded N 5

N 5 E discarded

Figure 7. John sounds like Jane

THE CONTAINS OPERATOR

The CONTAINS operator selects observations that include the specified substring.

. ? can be used instead of the mnemonic.
e The position of the substring within the variable’s values is not important.
. Comparisons made with the CONTAINS operator are case sensitive.

Equivalent Statements

where Job Title contains 'Rep’;

where Job Title ? 'Rep';

Figure 8. The Contains Operator

Let’s see what happens when we use the contains operator.

Data Step Code

data pharmasug24

.thisisJohn;
set sashelp.

class;

where name contains "John";
run;

Data Step Results

é‘}, MName ,@3 Sex @]l Age @ Height @]l Weight
1 |John M 12 29 99.5

2. SHAPE 2 - PERL - MATCH A PATTERN

BUSINESS SCENARIO 2 - MATCH A PATTERN

We have been tasked to isolate all SKUs that match this pattern 'DDD ddddd '.

F T

i@ SalesinUsd @ SalesCost & Quantitylnvoi .. 4.

SKU

212142 1,589.61 2419 CPR 00108N 0800XR
249577 2,099.13 1260 CPR 00108N 0800XR
294277 1,682.82 1581 CPR 00108N 0800XR
2412.63 1,171.20 1760 CPR 00108N 0800XR
2,006.53 1,506.36 1297 CPR 00108N 0800XR

1,911.10 1,988.19 1799 CPR 00200 0400X
1,232 .64 1,273.59 1864 CPR 00200 0400
1,839.40 1,997.69 1674 CPR 00200 0400XR
231342 247613 2039 CPR 00200 0400XR

Figure 9. Matching a pattern

USING PERL FOR PATTERN MATCHING

Perl was designed specifically for text processing. The 1990s saw the growth of the World Wide Web. It
also saw the rise of text-based information during that period. As one of the languages very capable of
text manipulation and undergoing rapid development, Perl was suited to the task at hand. As a result, it
became a very popular web programming language, even being referred to as the ‘duct-tape of the Web'.

Perl is a very high-level language. That means that the code is quite dense. A Perl program might be
around 30% to 70% as long as the corresponding program in C.

PERL IN SAS
Perl regular expressions were added to SAS in Version 9. SAS regular expressions (similar to Perl regular

expressions but using a different syntax to indicate text patterns) have been around since version 6.12,
but many SAS users are unfamiliar with either SAS or Perl regular expressions.

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Because SAS already has such a powerful set of string functions, you might wonder why you need regular
expressions. Many of the string processing tasks can be performed either with the traditional character
functions or regular expressions. However, regular expressions can sometimes provide a much more
compact solution to a complicated string manipulation task.

MATCHING A PATTERN

Since the backslash, forward slash, parentheses, and several other characters have special meaning in a
regular expression, you may wonder, how do you search a string for a \ character or a left or right
parenthesis? You do this by preceding any of these special characters with a backslash character (in Perl
jargon called an escape character). So, to match a \ in a string, you code two backslashes like this: \\. To
match an open parenthesis, you use \(.

/ delimiters

\(matches an open paranthesis

\D matches a non-digit

\d matches a digit

\s matches a space

{n,m} Matches the previous subexpression n or more times, but no more than m
\) matches a closed paranthesis

Perl Code

title 'Midwest Electrical Supply Monthly Sales by product group'
title?2 "SKUs that match this pattern only 'DDD ddddd ";

proc print data=sashelp.mwelect;
where prxmatch (("/\D{3}\s\d{5}\s/"), SKU) > 0;

run;
Perl Results

Midwest Electrical Supply Monthly Sales by product group
SKUs that match this pattern only 'DDD ddddd '

JAN2001 Electrical Buffalo 174032 160065 CPR 00200 0400RI
] FEB2001 Electrical East Buffalo 81536 750.66 . CPR 00200 0400RI
] mAR2001 Electrical East Buffalo 184845 170565 . CPR 00200 0400RI
] APR2001 Electrical East Buffalo 32492 29121 . CPR 00200 0400RI
MAY2001 Electrical East Buffalo 64824 58488 . CPR 00200 0400RI

] suN2001 Eectrical East Buffalo 89890 85674 . CPR 00200 0400RI
D su2001 Electrical East Buffalo _ . ~ CPR 00200 0400RI
I AuG2001 Electrical East Buffalo : : . CPR 00200 0400RI

"7l SEP2001 Electrical East Buffalo : : . CPR 00200 0400RI

3. SHAPE 3 - MACRO - AUTOMATE FIND AND REPLACE

BUSINESS SCENARIO 3 - USING MACRO VARIABLES TO AUTOMATE

We have been asked to find the country with the highest population in 2004. Since we would like to feed
this data to another report, we will store the country name and the population count in 2 macro
variables that we can reuse over and over again.

e

V'

Figure 10. Using macro variables to automate results.

CREATING AND REFERENCING MACRO VARIABLES

The process of creating macro variables is simple. First, we create the macro variables and then submit
code to create a report using the defined macro variables.

Macro Variable
& \
S=== = SAS Code i
= '

Figure 11. Creating and referencing macro variables
CREATING MACRO VARIABLES WITH PROC SQL

In PROC SQL, use an INTO clause to create macro variables and assign a value to them or to update
existing macro variable values. The INTO clause must follow the SELECT clause.

SELECT ...
INTO ...
FROM table[view ...
<additional clauses>

Figure 12. Creating macro variables with PROC SQL

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

10

CREATING MACRO VARIABLES: SYNTAX 1

Syntax 1 places values from the first row returned by an SQL query into one or more macro variables.
Data from additional rows returned by the query is ignored. The value from the first column in the
SELECT clause is placed in the first macro variable listed in the INTO clause, and so on.

SELECT column-1 format=format-name. <, ...column-n>
INTO :macvar_1<, ... :macvar_n>
FROM tablelview ...

Figure 13. Creating macro variables: Syntax 1

MACRO TO GRAB COUNTRY WITH THE HIGHEST POPULATION

Macro Code
proc sql noprint;
select pop format commal3. , name
into : Maxpop , : country
from sashelp.demographics
order by 1 descending;

put &=country;

Fput &=maxpop;

Macro Results in the log

45 put &=country;
COUNTRY=CHINA
46 put &=maxpop;

MAXPOP=1, 323,344,591

4. SHAPE 4 - PROC SQL — SPEAK THE ELEGANT BOOLEAN
BUSINESS SCENARIO 4 - USING BOOLEAN LOGIC TO COUNT ROWS

We would like to obtain population range counts by region.

_AMR —Amﬁ »
o V\LRR - Weste
EUR - Europe}

EMR - Middle East;

1

Figure 14. World map with region names

BOOLEAN LOGIC IN PROC SQL

Everything in the digital world can be broken down into 1 or O, or rather Yes or No. We will take
advantage of this Boolean capacity to get population counts by each region. First, it would be useful to
understand the syntax order of PROC SQL.

PROC SQL SYNTAX ORDER

The specified order of the clauses below, within the SELECT statement is required.

PROC SQL;
SELECT object-item <, ...object-item>
FROM from-list

<WHERE sql-expression>

<GROUP BY object-item <, ... object-item >>

<HAVING sql-expression>

<ORDER BY order-by-item <DESC> <, ...order-by-item>>;
QUIT;

Figure 15. PROC SQL Syntax Order
USING PROC SQL TO GET COUNTS

Proc Sql Code

title "population counts by country";
title2 "&country";
title3 "had the maximum population of &maxpop in 2005";
proc sqgql;
select region,
sum (pop <= 1000000) 'upto 1,000,000",
sum (pop between 1000001 and 10000000) 'lT - 10 million',
sum (pop between 10000001 and 50000000) '10 50 million',
()
(

sum (pop between 50000001 and 100000000 '50 - 100 million',
sum (pop between 100000001 and 500000000) '100 - 500 million',
sum (pop > 500000001) '500 million and above'

from sashelp.demographics

group by 1

quit;

Proc Sql Results

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

12

population counts by country
CHINA
had the maximum population of 1,323,344,591 in 2005

AFR 5 20 18

2 1 0
AMR 11 12 9 0 3 0
EMR 3 7 8 2 1 0
EUR 7 26 13 8 1 0
SEAR 2 1 3 2 72 1
WPR 14 5 6 2 1 1

5. SHAPE 5 — CAS — GET EFFICIENT IN THE CLOUD

The Compute Server aka the original SAS 9 Workspace Server

In your organization, you will have data in a variety of data sources like databases, streaming data, the
cloud, or folder paths. With SAS Viya, you can access these sources using either the Compute Server or
the CAS server depending on your needs.

For example, you can use the traditional Compute Server to access some (or all) of those data sources
using SAS libraries like you always have.

In this example, the Compute Server has been set up to access four out of the five data sources. You will
use the familiar LIBNAME statement to read data into the Compute Server for processing. In SAS Viya,
this works the same as it does in SAS’9.

Accessing Data Sources with Compute Server

SAS Libraries

-

CAS Server

Copyright © 545 isttute nc. Al rghtsreserved,

Figure 16. The SAS Compute Server

13

The CAS Server

Remember that CAS can also access a variety of data sources using caslibs. The Compute Server and the
CAS server are analytic engines that process data differently.

In sas Viya you can also start a CAS session from your compute session.
Cas provides for scalable, distributed parallel computing on multiple worker nodes that are remote from
your compute SAS session.

Accessing Data Sources with CAS Server

SAS Libraries

0000
k1113
—
I—

—

SO

[
Database
Compute Server >
e = S
—

<>
CAS Server

§sas

Figure 17. The CAS Server

CASL — The Dot operator

CASL is not object oriented, but does have internal Class variables such as arrays, dictionaries, and
result tables. The primary operator in CASL is the DOT (‘.") operator. This operator is polymorphic,
meaning that the operation depends on the data type of two operands. If the 1st operand is a
dictionary, then the second operand is either an index in the dictionary list or a key used to look up the
values.

CASL-the DOT operator

Abstraction

Encapsulation Polymorphism

gsas

Figure 19. CASL — The Dot operator

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

14

Let’s take a look at an example of this with CASL code where | want to create a dictionary object
similar to a python dictionary. Notice the ease of usage & similarity in dot notation syntax.

CASL Code

proc cas;
table.fileInfo result=samples files / caslib='samples';
print samples files;
myTbl = samples files['FileInfo'];
myFilesToLoad = myTbl[, 'Name'];
print myFilesToLoad;

do fileName over myFilesToLoad;
print fileName;
end;

quit;

Essentially, we are creating a dictionary object like we would in Python, which contains a key called
fileinfo. That key holds a table which contains all the files in samples. We’re instructing CAS to get all
rows of the name column(which is all table names) and automatically create a list called myfilestoload
that we will later load into memory.

6. ACKNOWLEDGEMENT

The author is grateful to the many SAS users that have entered her life. Each User has either asked
or answered a question. This in turn gave the author the impetus to research and study new ways to
express the wonderful shape of SAS code. Sometimes a user appeared in the form of a teacher to
show her the many ways in which to express the New Shape of SAS code. The users are too many to
thank individually so this is a thank you to every single user who has touched her life. She is grateful
to the Pharmasug Academic Committee for inviting her to present a paper. She would also like to
express her gratitude to her manager, James Waite without whose guidance, support and
permission, this paper would not be possible.

7. CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Charu Shankar

SAS Institute Canada, Inc.

Charu.shankar@sas.com
https://blogs.sas.com/content/author/charushankar/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://blogs.sas.com/content/author/charushankar/

15

8. REFERENCES

“How the data step works: A Basic Introduction”. Support.sas.com website.

Kuligowski, Andrew T.; Shankar, Charu. “Know thy data: Technigues for data exploration”. Proceedings of SAS
Global Forum 2013, San Francisco, CA.

SAS processing: compile & execute phase
Shankar, Charu. November 2011. “Retail therapy the SAS way”. Blogs.sas.com website.

Sounds Like Operator.
Shankar, Charu. January 2011. “A new year’s resolution that sounds like more fun than a spinning class”.
Blogs.sas.com website.

Shankar, Charu. January 2011. “Find your data pattern with PERL". Blogs.sas.com website.
https://blogs.sas.com/content/sastraining/2011/01/24/find-your-data-pattern-with-perl/

“SAS® 9 PERL regular expression cheat sheet”. Support.sas.com website.
https://support.sas.com/rnd/base/datastep/perl _regexp/regexp-tip-sheet.pdf

“SEARCHING USING Soundex codes”. The Spreadsheet Page
http://spreadsheetpage.com/index.php/tip/searching using soundex codes/

Hadden, Louise S. “Wow! You Did That Map with SAS/GRAPH®?”. Proceedings of SAS Global Forum 2009,
Washington, DC.
https://support.sas.com/resources/papers/proceedings09/215-2009.pdf

SAS Macro INTO clause.

“SAS® 9.4 Macro Language: Reference, Fifth Edition”. Support.sas.com website.
https://go.documentation.sas.com/?docsetld=mcrolref&docsetTarget=n1y2jszlvs4hugnl4nooftfrxhp3.htm&d
ocsetVersion=9.4&locale=en

”SAS® 9.4 SQL Procedure User’s Guide, Fourth Edition”. Support.sas.com website.
http://support.sas.com/documentation/cdl//en/sqlproc/69822/HTML/default/viewer.htmittitlepage.htm

Boolean: #1 SAS programing tip for 2012
Shankar, Charu. May 2012. “#1 SAS programming tip for 2012”. Blogs.sas.com website.
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/

Shankar, Charu. April 2012. Go home on time with these 5 PROC SQL tips ”. Blogs.sas.com website.
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/

CAS Language (CASL) and CAS Actions, SAS documentation website
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4 3.4/pgmdiff/p06ibhzb2bklaon1a86ili3wpil9.htm

Code for building the Pflugerville dataset

data pharmasug24.misspelled;
length studentld $4 Name S7 city $20 state $2;
input studentid $ name S city S state S;
datalines;

Copyright © 2016, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a001290590.htm
http://support.sas.com/resources/papers/proceedings13/145-2013.pdf
http://support.sas.com/resources/papers/proceedings13/145-2013.pdf
https://blogs.sas.com/content/sastraining/2011/11/03/retail-therapy-the-sas-way/
https://blogs.sas.com/content/sastraining/2011/01/12/a-new-years-resolution-that-sounds-like-more-fun-than-a-spinning-class/
https://blogs.sas.com/content/sastraining/2011/01/12/a-new-years-resolution-that-sounds-like-more-fun-than-a-spinning-class/
https://blogs.sas.com/content/sastraining/2011/01/24/find-your-data-pattern-with-perl/
https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf
http://spreadsheetpage.com/index.php/tip/searching_using_soundex_codes/
https://support.sas.com/resources/papers/proceedings09/215-2009.pdf
https://go.documentation.sas.com/?docsetId=mcrolref&docsetTarget=n1y2jszlvs4hugn14nooftfrxhp3.htm&docsetVersion=9.4&locale=en
https://go.documentation.sas.com/?docsetId=mcrolref&docsetTarget=n1y2jszlvs4hugn14nooftfrxhp3.htm&docsetVersion=9.4&locale=en
http://support.sas.com/documentation/cdl/en/sqlproc/69822/HTML/default/viewer.htm#titlepage.htm
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/pgmdiff/p06ibhzb2bklaon1a86ili3wpil9.htm

16

1111 aaaa ploogervile TX
2222 bbbb Phlugerville TX
3333 cccc plugerrville TX
4444 dddd Phloogerville TX
5555 eeee Plugerville Tx

’

run;

	Abstract
	data used in this presentation
	8. References
	“How the data step works: A Basic Introduction”. Support.sas.com website.
	Kuligowski, Andrew T.; Shankar, Charu. “Know thy data: Techniques for data exploration”. Proceedings of SAS Global Forum 2013, San Francisco, CA.
	SAS processing: compile & execute phase
	Shankar, Charu. November 2011. “Retail therapy the SAS way”. Blogs.sas.com website.
	Sounds Like Operator.
	Shankar, Charu. January 2011. “A new year’s resolution that sounds like more fun than a spinning class”. Blogs.sas.com website.
	Shankar, Charu. January 2011. “Find your data pattern with PERL”. Blogs.sas.com website.
	https://blogs.sas.com/content/sastraining/2011/01/24/find-your-data-pattern-with-perl/
	“SAS® 9 PERL regular expression cheat sheet”. Support.sas.com website.
	https://support.sas.com/rnd/base/datastep/perl_regexp/regexp-tip-sheet.pdf
	“SEARCHING USING Soundex codes”. The Spreadsheet Page
	http://spreadsheetpage.com/index.php/tip/searching_using_soundex_codes/
	Hadden, Louise S. “Wow! You Did That Map with SAS/GRAPH®?”. Proceedings of SAS Global Forum 2009, Washington, DC.
	https://support.sas.com/resources/papers/proceedings09/215-2009.pdf
	SAS Macro INTO clause.
	“SAS® 9.4 Macro Language: Reference, Fifth Edition”. Support.sas.com website.
	https://go.documentation.sas.com/?docsetId=mcrolref&docsetTarget=n1y2jszlvs4hugn14nooftfrxhp3.htm&docsetVersion=9.4&locale=en
	
”SAS® 9.4 SQL Procedure User’s Guide, Fourth Edition”. Support.sas.com website.
	http://support.sas.com/documentation/cdl//en/sqlproc/69822/HTML/default/viewer.htm#titlepage.htm
	Boolean: #1 SAS programing tip for 2012
	Shankar, Charu. May 2012. “#1 SAS programming tip for 2012”. Blogs.sas.com website.
	https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/
	Shankar, Charu. April 2012. Go home on time with these 5 PROC SQL tips ”. Blogs.sas.com website.
	https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-proc-sql-tips/
	CAS Language (CASL) and CAS Actions, SAS documentation website https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/pgmdiff/p06ibhzb2bklaon1a86ili3wpil9.htm
	Code for building the Pflugerville dataset
	run;

