PharmaSUG 2024 - Paper MM-267

A Practical Approach to Automating SDTM Using a Metadata-Driven
Method That Leverages CRF Specifications and SDTM Standards
Xiangchen (Bob) Cui, Min Chen, and Jessie Wang, CRISPR Therapeutics AG, Boston, MA

Automated SDTM generation has several benefits, including efficiency, accuracy, compliance with
regulatory requirements, and the speeding up of the data analysis process. However, due to the
dissimilarity and varying complexity of different CRFs, SDTM domains, and eSource systems among
different studies, development of a tool to automate SDTM has been a challenging task for sponsors,
CROs, and EDC service providers.

We propose a new approach in automatic generation of SAS® code for SDTM. A SAS-based macro is
developed based on CRF specifications from an EDC database and SDTM standards. Our approach is
user-friendly with high transparency, easily scalable to multiple studies, and especially useful for relatively
smaller sponsors and CROs, for there is no requirement to standardize CRFs and raw dataset variables’
attributes (which is the best practice but can be too work-intensive) and no required expertise in other
computer languages.

SDTM automation streamlines the process of transforming raw clinical trial data into the standardized
SDTM format. This process involves CRF annotations, SDTM specification writing, development of SAS
code to generate SDTM data, validation, SDRG writing, and define.xml generation. SDRG and define.xml
support regulatory submissions along with annotated CRFs and SDTM datasets in v5 Transport Format
(XPORT) [1]. Automation offers several benefits, including efficiency, accuracy, compliance with
regulatory requirements, and the speeding up of the data analysis process. However, it is not an easy
task to achieve due to the complexity of different CRFs and eSource systems.

Sponsors, CROs, and EDC service providers can have many different approaches to automating SDTM,
and the degree of automation can differ based on the initial data conditions and complexity. [2] details
how Eli Lilly has been pursuing SDTM automation. It uses a car analogy to describe the concept: four
wheels and an engine to drive. It states “the four wheels are: a robust set of standards, a metadata
repository to store and maintain those standards, a set of generic macros for data set creation, and a
programming process to utilize those macros. The engine is metadata. By defining a metadata model that
not only defines the source and target but also the logic to convert the source to the target, we can build
out the rest of the components to make this vision a reality. A proof-of-concept project based on this idea
achieved 96% automation of SDTM variables in a test study” [2].

Automation is a hybrid process comprising of applications or tools plus manual parts involving CRF
annotations and SDTM specification writing. Standardization of raw data collection can dramatically
reduce the time spent on these manual parts. However, the resources needed for standardization are not
always feasible for smaller sponsors or CROs.

This paper introduces a new approach in the automatic generation of SAS code for SDTM automation
that strikes a balance between high-level automation and resource investment. A SAS-based macro
named %SDTM_Code_Generator was developed based on CRF specifications from an EDC database
and SDTM programming standards [3,4]. We provide details on the rationale and logic flow for this macro,
its inputs and outputs, how to build a master-annotation spreadsheet to support SDTM automation, how
to efficiently scale it up for new studies, how to handle external data, how to effectively validate its output
datasets, and how to deal with EDC database changes.

Based on our working experience from applying this new approach to two different types of oncology
studies, this paper is titled “A Practical Approach to Automating SDTM” for the following reasons:

1. High-quality delivery of SDTM datasets and operational efficiency through high-level automation

2. Flexibility for users to control the degree of automation and account for cost/timelines

3. Faster and solid validation due to not requiring double programming for all domains and a
guarantee that all raw dataset variables are accounted for in SDTM programming

4. Scalability to multiple studies by leveraging existing CRF specifications, master-annotation
spreadsheets, and macros

5. Transparency and user-friendliness as users can easily and directly review the inputs and outputs
of the process so that they have very high confidence in the delivery of SDTM datasets

6. No requirement of huge efforts to standardize CRFs or raw dataset variable attributes

No requirement of expertise in other computer languages, such as Structured Query Language
(SQL) for script creation

INTRODUCTION TO OUR SDTM PROGRAMMING PROCESS

In the past, we've written about our established SDTM programming process. [3] introduces our standard
SDTM specification, which follows CDISC’s standard. [4] presents a systematic approach to automating
the SDTM programming process to ensure compliance with FDA Business Rules [5] and CDISC SDTMIG
[6] for FDA submission. It details our SDTM programming standards consisting of the SDTM
Programming Convention (SDTMPC) and the SDTM Programming Library (SDTMPL). The utilization of
template SAS Programs for SDTM Mapping has been our standard practice, and they have been
successfully applied to multiple clinical studies, including several FDA submissions and their approvals.
Readers can refer to [4] for more information. The present goal is to replace our standard SDTM mapping
templates with a macro for SDTM automation.

STANDARD SDTM PROGRAMMING WORKFLOW

Figure 1 below depicts the standard SDTM programming workflow. SDTM programmers start to develop
SAS programs for the SDTM dataset generation only after CRF annotations and SDTM specifications are
available. A SDTM programmer manually annotates each CRF either to set up the one-to-one mapping
from each raw dataset variable specified in the CRF to its mapped SDTM domain variable or
supplemental qualifier or to label it as “NOT SUBMITTED”. The annotated case report form (aCRF) then
guides the programmers to develop SAS programs for SDTM dataset generation. One also manually
completes each SDTM domain specification to document and select the required SDTM variables and/or
supplemental qualifiers in the final SDTM dataset.

The development of each SDTM mapping SAS program is both critical and integral to SDTM
programming. However, it is time-consuming even with tools such as template SAS Programs for SDTM
mapping or CRF annotation tools, which guide the programmers in annotating each CRF based on the
applicable standards [7]. The amount of manual work required is high as well.

CRF

Annotations Development of Generation of Development of Finalization
SAS Programs for g 4 SDTM Production Independent SAS of SDTM

SDTM Production Datasets Programs for Validation Datasets

Specifications

I Double Efforts I

Figure 1. Standard SDTM Programming Workflow

INTRODUCTION TO OUR NEW SDTM PROGRAMMING WORKFLOW

Figure 2 below shows our new SDTM programming workflow. In contrast to the standard workflow
depicted in Figure 1, a master-annotation spreadsheet is created from CRF annotations and CRF
specifications. The master-annotation spreadsheet contains metadata and variable attributes for the raw

datasets combined with annotations mapping raw dataset variables to specific SDTM domain variables.
SDTM specifications contain information on SDTM standards along with variable inclusion/exclusion and
derivation. The master-annotation and SDTM specifications are the inputs of our new macro,
%SDTM_Code_Generator, which automatically generates SDTM mapping SAS programs. In contrast to
the traditional double programming validation shown in Figure 1, our new programming validation process
consists of the following three steps: code reviewing, real data testing, and developing an independent
mapping SAS program to validate a SDTM dataset for some complicated domains as needed per the
team’s decision.

CRF Annotations
Master-

Annotation Validation Process:

CRF Specifications Spreadsheet Generating SAS Programs 1. Code Reviewing Finalization

with Raw Dataset for SDTM Dataset 2. Real Data Testing of SDTM

Variable Attributes SDTM . 3. Independent SAS Datasets
Specifications Programs As Needed

Figure 2. New SDTM Programming Workflow

RATIONALE FOR THE DEVELOPMENT OF A MACRO FOR SDTM AUTOMATION

Aside from trial design domains, there are typically over twenty SAS programs needed to read and map
the data collected from CRFs for each study. From a quality assurance (QA) perspective, independently
developed SAS programs for validation are designed to ensure the highest quality. However, that doubles
the development work required. Some domains, such as LB or PR, may have hundreds of data blocks
due to the numerous tests or procedures collected on CRF forms. The manual effort needed to ensure
that all of these are correctly included in both production and validation programs is time-intensive and
still prone to error.

Table 1 shows the advantages and benefits of a macro for SDTM automation over the SDTM mapping
template SAS programs. A huge amount of work is needed to update template SAS programs for EDC
database changes or new studies while a macro can automatically adapt to some of those changes and
save development time.

Types of Specific Changes SDTM Mapping Template SAS A Macro

Changes Programs

eSource Raw dataset names, variable | Must make the corresponding No changes or minimal

systems or attributes, CRF annotations updates/changes across over forty SAS changes

EDC database programs from both production and

changes validation by typing and/or copying, which

is time-consuming and error-prone

New studies New CRFs, domains, more Make the corresponding updates/changes | May need to update the macro
changes, annotations, and to SAS programs correspondingly and update its
specifications input files if necessary

Table 1. Advantages of a Macro for SDTM Automation Over SDTM Mapping Template SAS
Programs

INTRODUCTION TO THE MACRO’S SINGLE PARAMETER AND ITS OUTPUT FOR
SDTM AUTOMATION

Table 2 below shows the macro’s single parameter, its calls, and the outputs of the calls. Its single
parameter is either a specific SDTM domain name or “ALL”, and its call generates a SAS program for the
specified domain or SAS programs for all domains, respectively. It requires that all CRF annotations
(SDTM mapping), all raw dataset names, and their attributes (variable names, labels, and types) are
stored in a single spreadsheet named as master-annotation.xIsx. Further details for the master-
annotation spreadsheet are included in a later section.

Of note, the subject visits (SV) domain is a special purpose domain that requires more complex
derivations, many of which are different from ones of the original %SDTM_Code_Generator macro. To
simplify the development of the macro and reduce the length of SAS code needed, we developed an

additional macro named %SV_Code_Generator, which leverages the output from the call of
%SDTM_Code_Generator and extends it further. Please refer to [8] for more information.

Macro Call Output of the Macro Call

%SDTM_Code_Generator(domain_=Domain Name) A SAS program with the domain name (e.g., DM.sas)

For example, % SDTM_Code_Generator(domain_=DM);

%SDTM_Code_Generator(domain_=ALL) All SAS programs for the domains specified in master-
annotation.xls

Table 2. %SDTM_Code_Generator Macro Calls and Outputs

HOW %SDTM_CODE_GENERATOR CREATES A SAS PROGRAM

Our macro generates SAS mapping code from its input files and writes that mapping code into a SAS
dataset. Display 1 below is an example of that SAS dataset with 2 columns: lines and _order. Using the
code in Display 2 from %SDTM_Code_Generator, we can output the contents of our final dataset into a
SAS program file, CM.sas (Display 3). The lines of code contained in this output CM.sas file (Display 3)
are identical to the contents of Display 1’s lines column.

& lines @ _order
1 data try; 10
2 attrib &attrib.; 20
3 set CM{drop=studyid siteid); - 30
4 901
5 STUDYID="Study-101" 902
6 DOMAIN ="CM'; a03
7 USUBJID = strip{STUDYID) || strip(substr{SUBJECT, 4)); ap4
8 CMSPID = strip(put{fRECORDPOSITION, 23.)); a05
9 if not missing{CMTRT) then CMTRT=strip(CMTRT); 906
10 CMDECOD = strip{CMTRT_PT); 907
" CMCAT ="PRIOR. AND CONCOMITANT MEDICATIONS', - 908
12 if not missing{CMINDC_STD) then CMIND C=strip({CMINDC_STD); 909
13 CMCLAS = coalescec(CMTRT_ATC4, CMTRT_ATC3, CMTRT_ATCZ2, CMTRT_ATC1); - 910
14 CMCLASCD = coalescec(CMTRT_ATC4_CODE, CMTRT_ATC3_CODE, CMTRT_ATC2_CODE, CMTRT_ATC1_CODE); ... 911
15 if not missing{CMDOSE) then CMDOSE=CMDOSE; - 912
16 if not missing{CMDOSU_STD) then CMDOSU=strip{CMDOSU_STD): 913
17 if not missing{CMDOSFRM_STD) then CMDOSFRM=strip{CMDOSFRM_STDY); 914
18 if not missing{CMDOSFRQ_STD) then CMDOSFRQ=strip(CMDOSFRQ_STD); 915
19 if not missing{CMROUTE_STD) then CMROUTE=strip(CMRQUTE_STD); 916
20 %map_dtc_date(DATEVAR=CMSTDTC, RAWDATE=CMSTDAT); . 917
21 %map_dtc_time(_DATEVAR=CMSTDTC, RAWTIME=CMSTTIM); . 918
22 %map_dtc_date(DATEVAR=CMENDTC,_RAWDATE=CMENDAT); o 919
23 %map_dtc_time(_DATEVAR=CMENDTC, RAWTIME=CMENTIM); 920
24 if CMONGO = 1 then CMENRTPT = "ONGOING"; 921
25 if not missing{CMENRTPT) then CMENTPT = "END OF STUDY"; - 922
26 run; 9225

Display 1. A SAS Dataset with Columns lines and _order Containing a Snippet of Code for SDTM
CM.sas

#let outdir=.../&program path.;
#let domain_ =CM;
data null ;
set final;
tile "&outdir./ .&domain_..sas";
put @1 lines $255.;
run;
Display 2. SAS Data NULL_ Step to Output a SAS Program

21 data try;

22 attrib &attrib.;

23 set CM(drop=studyid siteid);

24

25 STUDYID = ‘Study-181°';

26 DOMAIN = "CM';

27 USUBJIID = strip(STUDYID) || strip(substr(SUBJECT, 4));

28 CMSPID = strip{put(RECORDPOSITION, z3.));

29 if not missing(CMTRT) then CHMTRT=strip(CMTRT);

30 CMDECOD = strip(CMTRT_PT);

31 CMCAT = 'PRIOR AND CONCOMITANT MEDICATIOMS';

32 if not missing(CMINDC_STD) then CMINDC=strip(CMINDC_STD);

33 CMCLAS = coalescec(CMTRT_ATC4, CMTRT_ATC3, CMTRT_ATC2, CMTRT_ATC1);
34 CMCLASCD = coalescec(CMTRT_ATC4 CODE, CMTRT_ATC3 CODE, CMTRT_ATCZ CODE, CMTRT_ATC1_CODE);
35 if not missing(CMDOSE) then CMDOSE=CMDOSE;

36 if not missing(CMDOSU_STD) then CMDOSU=strip(CMDOSU_STD);

37 if not missing{CMDOSFRM_STD) then CMDOSFRM=strip({CMDOSFRM_STD);
38 if not missing(CMDOSFRQ_STD) then CMDOSFRQ=strip(CMDOSFRQ_STD);
39 if not missing(CMROUTE_STD) then CMROUTE=strip{CMROUTE_STD);
40 %¥map_dtc_date{ DATEVAR=CMSTDTC, RAWDATE=CMSTDAT);

4 %map_dtc_time(DATEVAR=CMSTDTC, RAWTIME=CMSTTIM);

42 %map_dtc_date(DATEVAR=CMENDTC, RAWDATE=CMENDAT);

43 %¥map_dtc_time{ DATEVAR=CMENDTC, RAWTIME=CMENTIM);

44 if CMONGO = 1 then CMENRTPT = 'ONGOING';

45 if not missing(CMENRTPT) then CMENTPT = "END OF STUDY';

45 run;

Display 3. A Snippet of the Output SAS Program for SDTM CM.sas

%SDTM_Code_Generator is designed to generate a SAS dataset first for each SDTM domain. Then, it
uses the SAS code from Display 2 to output a SAS program for each SDTM domain.

INTRODUCTION TO THE LOGIC FLOW OF %SDTM_CODE_GENERATOR

Figure 3 below shows the logic flow of %SDTM_Code_Generator alongside a typical SDTM
programming logic flow with arrows connecting corresponding blocks. The former outputs a SDTM SAS
program while the latter outputs a SDTM dataset.

Logic Flow of %SDTM_Code_Generator A Typical SDTM Programming Logic
to Generate a SDTM SAS Program Flow to Generate a SDTM Dataset

Read in Master-Annotation Spreadsheet Data Step
for CRF Annotated Variables + SDTM to Map Raw Dataset Variables
Specifications for Assigned Variables to SDTM Variables

Read in SDTM Specifications for Macro Macro Calls to Derive Standard SDTM
Calls for Derived SDTM Variables Variables

Simple Data Manipulation Output Main Domain

Read in Master-Annotation Spljeadsheet N SAS Code for Supplemental Domain
for Supplemental Domains 1
Simple Data Manipulation — > Output Supplemental Domain

Figure 3. The Logic Flow from %SDTM_Code_Generator vs. Typical SDTM Programming

Before developing SAS code for each SDTM domain, %SDTM_Code_Generator first reads in and
subsets the master-annotation spreadsheet for the dedicated SDTM domain. Secondly, it reads the

5

Origin and our newly added Derivation/Assigned columns from SDTM specifications, which contain
information on whether variables are directly mapped, assigned, or derived. Table 3 below shows the
source of inputs for the macro’s automation. When Origin is “CRF Page”, the macro directly maps those
variables from the master-annotation spreadsheet. When Origin is “Protocol”, “Assigned”, or “Derived”,
the Derivation/Assigned column in SDTM specifications can be utilized to further customize SAS macro

code.

Origin of Input of a SAS-Based Source Case
SDTM Macro
Variables
CRF Master-Annotation Combination of CRF Specifications and All mapping variables
Spreadsheet CRF Annotations
Protocol SDTM Specifications Derivation/Assigned column Assignment, e.g., STUDYID="Study-101’
Assigned SDTM Specifications Derivation/Assigned column Assignment, e.g., DOMAIN ='CM' or DM.ARMCD from
the call of %get_trt
Derived SDTM Specifications Derivation/Assigned column A line of code or macro call(s)

Table 3. Sources of Inputs for %SDTM_Code_Generator

Our standard SDTM specification [3] is based on CDISC’s standard. See Table 4 below for an example of
our DM domain specification with a sample of variables. The Variable, Label, Type, Controlled
Terminology, and Core columns come directly from the SDTMIG v3.4. Per the SDTMIG [6], the sources of
SDTM variables are categorized by the origin of the data source in the Define-XML document file, such

as “CRF”, “Protocol”, “Assigned”, or “Derived”.

To support our SDTM automation, we’ve enhanced each SDTM specification with a new column,
Derivation/Assigned, to store either a simple line of SAS assignment code or a SAS macro name. This
allows us to further customize code for the variables without needing to add extra code to
%SDTM_Code_Generator.

When Origin is “CRF Page xx”, most SDTM variables (e.g., RFICDTC) can be directly mapped from raw
dataset variables. When Origin is “Protocol”, “Assigned”, or “Derived”, the Derivation/Assigned column
can be utilized to further customize SAS macro code. In the case when one line of code is sufficient (e.qg.,
STUDYID, USUBJID, etc.), we write the code directly in the Derivation/Assigned column, and the macro
reads that in.

However, some other standard SDTM variables require more lines of code. They may need additional
lines of code and/or data steps to derive from other variables either within the same raw dataset or across
multiple raw datasets. Examples of these are --DTC, --STDTC, --ENDTC, --DY, --STDY, --ENDY, --BLFL,
--LOBXFL, --SEQ, RFSTDTC, RFENDTC, RFXSTDTC, RFXENDTC, RFPENDTC, ARMCD, ARM, etc.
For coding efficiency, the derivation of these variables is generalized and grouped into a utility macro, and
the name of that specific utility macro is included in the SDTM specifications (e.g., %get_trt).

While the SDTM variables that require utility macros usually have Origin as “Protocol”, “Assigned”, or
“Derived”, there is one exception: the variable RACE. Since multiple races are collected in a study and
the multiple race-related SDTM guidelines [6] should be followed, we had to develop a %map_race utility
macro, and that utility macro name is written in the Derivation/Assigned column in SDTM specifications
for automation as shown in Table 4.

Variable Label Type | Length | Controlled Origin Core | Derivation/Assigned
Terminology

STUDYID Study Identifier Char | 20 Protocol Req [STUDYID='Study-101;

DOMAIN Domain Abbreviation Char |2 DOMAIN Assigned Req | DOMAIN='DM";

USUBJID Unique Subject Identifier Char |40 Derived Req | USUBJID=strip(STUDYID)||

strip(substr(SUBJECT ,4));

SUBJID Subject Identifier for the Study Char |20 CRF Page 267 | Req | SUBJID=strip(substr(SUBJECT,5));

RFSTDTC Subject Reference Start Date/Time Char |20 1ISO 8601 Derived Exp [%get_rfstdtc

RFENDTC Subject Reference End Date/Time Char |20 I1SO 8601 Derived Exp | %get_rfendtc

RFXSTDTC | Date/Time of First Study Treatment Char |20 1ISO 8601 Derived Exp | %get_rfxstdtc

RFXENDTC | Date/Time of Last Study Treatment Char |20 1ISO 8601 Derived Exp [%get_rfxendtc

RFICDTC Date/Time of Informed Consent Char |20 1ISO 8601 CRF Page 5 Exp

RFPENDTC | Date/Time of End of Participation Char |20 1SO 8601 Derived Exp | %get_rfpendtc

RACE Race Char |50 RACE CRF Page 7 Exp %map_race

ETHNIC Ethnicity Char | 40 ETHNIC CRF Page 7 Perm

ARMCD Planned Arm Code Char |20 Assigned Exp | %get_trt

Variable Label Type | Length | Controlled Origin Core | Derivation/Assigned
Terminology

ARM Description of Planned Arm Char | 200 Assigned Exp [%get trt

ACTARMCD | Actual Arm Code Char |20 Assigned Exp | %get_trt

ACTARM Description of Actual Arm Char | 200 Assigned Exp | %get_trt

ARMNRS Reason Arm and/or Actual Arm is Null | Char | 80 Assigned Exp [%get_trt

ACTARMUD | Description of Unplanned Actual Arm | Char | 200 Assigned Exp | %get_trt

Table 4. DM Domain Specification With a Sample of Variables

Table 5 lists five of our SAS utility macros dedicated to SDTM variables: --DTC, RACE, RACEL, ...,
RACES, --SEQ, and --DY. Please refer to Appendix 1 for a more comprehensive list of our utility macros.
A centralized SAS dataset named macrocalls stores all macro calls located in the macro library, except
for %omap_dtc_date and %map_dtc_time, which are directly called by %SDTM_Code_Generator. Table
6 shows examples of the records in the macrocalls dataset for domains AE, DM, and LB.

SDTM Macro Name Description SDTM Domains | Example Macro Call
Variable
--DTC map_dtc_date | Derive -DTC All Domains %map_dtc_date(DATEVAR=AESTDTC,
and variables when there except for DM _RAWDATE=AESTDAT);
map_dtc_time | are partial dates and SV %map_dtc_time(_DATEVAR=AESTDTC,
RAWTIME=AESTTIM);
RACE, map_race Derive RACE DM, SUPPDM %map_race(_ NUMFL=Y,_VAR=RACE1 RACE2
RACET, ..., variables for DM and RACE3 RACE4 RACES RACES);
RACES SUPPDM
-SEQ get_seq Derive --SEQ All Domains %get_seq(_DOMAIN=LB,
variables based on except for DM _SORTKEYS=STUDYID USUBJID LBCAT
provided key and SV LBTESTCD VISITNUM LBDTC);
variables
--DY get_dy Derive --DY variables | All Domains %get_dy(_ DATEVAR=LBDTC,
based on provided -- _DAYVAR=LBDY);
DTC variables

Table 5. Examples of SAS Utility Macros for SDTM Automation

MACRO MORD | DOMAIN | VARIABLE MCALL
%get_seq 100 AE AESEQ %get_seq(_ DOMAIN=AE,_SORTKEYS=STUDYID USUBJID
AESTDTC AEDECOD AESPID);
%get_dy 102 AE AEENDY %get_dy(_ DATEVAR=AEENDTC, DAYVAR=AEENDY);
%get_dy 102 AE AESTDY %get_dy(_ DATEVAR=AESTDTC, DAYVAR=AESTDY);
%get_aetrtem | 111 AE AETRTEM %get_aetrtem();
%map_race 2 DM RACE %map_race(_NUMFL=Y,_VAR=RACE1 RACE2 RACE3 RACE4
RACE5 RACES);
%get_rfstdtc 105 DM RFSTDTC %get_rfstdtc(_ DATA=EX1 EX2 EX3,_DATEVAR=EX1STDAT
EX2STDAT EX3STDAT,_SUBJVAR=SUBJECT,
TIMEVAR=EX1STTIM EX2STTIM EX3STTIM);
%get_rfendtc 106 DM RFENDTC %get_rfendtc(_ DATA=EX1 EX2 EX3,_DATEVAR=EX1ENDAT
EX2ENDAT EX3ENDAT,_SUBJVAR=SUBJECT,
TIMEVAR=EX1ENTIM EX2ENTIM EX3ENTIM);
%get_rfxstdtc | 107 DM RFXSTDTC %get_rfxstdtc(_ASSIGN=RFSTDTC, DATA=,_DATEVAR=,
SUBJVAR=, TIMEVAR=);
%get_rfxendtc | 108 DM RFXENDTC | %get_rfxendtc(_ ASSIGN=RFENDTC,_DATA=, DATEVAR=,
SUBJVAR=, TIMEVAR=);
%get_rfpendtc | 109 DM RFPENDTC %get_rfpendtc(_ CUTOFFDT=&cutoffdt., DATEVAR=EOSDAT);
%get_trt 110 DM ARMCD %get_trt(_ DRGCRIT=not missing(EX3STDAT),_DRGDATA=EX3,
SFCRIT=ENRSF_STD='N',_SFDATA=EN, SUBJVAR=SUBJECT);
%get_seq 100 LB LBSEQ %get_seq(_DOMAIN=LB,_SORTKEYS=STUDYID USUBJID LBCAT
LBTESTCD VISITNUM LBDTC);
%get_dy 102 LB LBDY %get_dy(_DATEVAR=LBDTC, DAYVAR=LBDY);
%get_lobxfl 103 LB LBLOBXFL %get_lobxfl(_ DATEVAR=LBDTC,_DAYVAR=LBDY,_DOMAIN=LB,
_LASTVAR=LBTESTCD,_RESVAR=LBSTRESC,
SORTVARS=USUBJID LBCAT LBTESTCD LBDTC);
%get_blfl 104 LB LBBLFL %get_blfl(_DATEVAR=LBDTC,_DAYVAR=LBDY, DOMAIN=LB,
_LASTVAR=LBTESTCD,_RESVAR=LBSTRESC,
SORTVARS=USUBJID LBCAT LBTESTCD LBDTC);

Table 6. Examples of Records From SAS Dataset Macrocalls for SDTM Domains: AE, DM, and LB

%SDTM_Code_Generator merges the macrocalls data with the Derived/Assigned column in SDTM
specifications by domain, variable name, and macro name. Then it generates the macro calls for each
domain’s SDTM mapping program using the MCALL variable. Display 4 shows the generated macro calls
for DM.sas along with the programming comments.

FEEXEERXE Programming Note: SDTM Variable: RFSTDTC Meeds the Derivation by the Macro Call: %get_rfstdtc;
%get_rfstdtc(_DATA=EX1 EX2 EX3,_DATEVAR=EX1STDAT EX2STDAT EX3STDAT,_ SUBJVAR=SUBJECT,_TIMEVAR=EX1STTIM EX2STTIM EX3STTIM);
EEEXREEXX Programming Mote: SDTM Variable: RFENDTC Meeds the Deriwvation by the Macro Call: %get rfendtc;

%get_rfendte(DATA=EX1 EX2 EX3, DATEVAR=EX1EMNDAT EXZENDAT EX3ENDAT, SUBJVAR=SUBJECT, TIMEVAR=EX1ENTIM EXZENTIM EX3ENTIM);
FEEXEEEEX Prpogramming Note: SDTM Variable: RFXSTDTC Meeds the Derivation by the Macro Call: ¥get_ rfxstdtc;
%get_rfxstdtc(ASSIGN=RFSTDTC, DATA=, DATEVAR=, SUBJVAR=, TIMEVAR=);

FEEREZEXE Programming Note: SDTM Variable: RFXENDTC Meeds the Derivation by the Macro Call: #get_rfxendtc;
%get_rfxendtc(ASSIGN=RFENDTC, DATA=, DATEVAR=, SUBIVAR=, TIMEVAR=);

FEEXEEEXEE Programming Note: SDTM Variable: RFPENDTC Meeds the Deriwvation by the Macro Call: %get_rfpendtc;
%get_rfpendtc(CUTOFFDT=&cutoffdt., DATEVAR=EOSDAT);

HEXXREEXX Programming Mote: SDTM Variable: ARMCD MNeeds the Derivation by the Macro Call: %get trt;

63 %get_trt(CTXCRIT=not missing(EX3STDAT), CTXDATA=EX3, SFCRIT=ENRSF_STD ='N', SFDATA=EN, SUBJVAR=SUBJECT);

Display 4. SAS Code Generated by %SDTM_Code_Generator for the Macro Calls of the DM
Domain

SRR R RV VA N

AR IRV IV |
o

[ea T R
SR

Medidata’s Rave EDC (Electronic Data Capture) is widely used to build the EDC database for a clinical
study. The Architect Loader Specification (ALS) is the document that Rave uses with metadata systems,
and it provides information about how the database has been set up. One can duplicate the structure in
another study database simply by customizing a pre-existing ALS and then importing the modified ALS
into the new study database. Rave users can export an ALS directly from the Rave database. Table 7
shows an example of the Forms sheet from a study’s ALS. The OID column shows the form names (EDC
dataset names), and the DraftFormName column shows the label of each form.

OID Ordinal | DraftFormName

SUBJ 1 Subject Registration

SV 2 Subject Visit

IC 3 Informed Consent

DM 4 Demographics

IE 5 Inclusion and Exclusion
EN 6 Enroliment

DIA 7 Diagnosis

MH 8 Medical History

RADPRE 9 Prior Radiation Therapy
THERPRE | 10 Prior Anti-Cancer Therapy
MR 14 Modified Rai Clinical Stage
VS 18 Vital Signs

EG 22 12- Lead ECG - Single Timepoint
PK 25 Study Product PK
BIONON 31 Exploratory Biomarkers
LBCHEM 35 Local Lab - Chemistry

uv 491 Unscheduled Subiject Visit
EOS 494 End of Study

Table 7. An Example of the Forms Sheet From an ALS

Table 8 below shows an example of the Fields sheet from a study’s ALS. The FieldOID column shows the
variable names for the EOS form, along with their formats (DataFormat) and labels (SASLabel). Of note,
the last column VARIABLE TYPE is added by the user and derived from column DataFormat. It is directly
used for the derivation inside %SDTM_Code_Generator.

FormOID | Ordinal | FieldOID SASLabel / VARIABLE LABEL DataFormat VARIABLE TYPE
EOS 1 EOSDAT End of Study Date dd MMM yyyy Date
EOS 2 EOSSTAT Subject Disposition at the End of Study | $15 char
EOS 3 EOSREAS Reason for End of Study $40 char
EOS 4 EOSOTSP_O Other, Specify $200 char
EOS 5 EOSDEADT Death Date dd MMM yyyy Date
EOS 6 PRCDTH Primary Cause of Death $20 char
EOS 7 EOSAESP_O Adverse Event, Specify $200 char
EOS 8 EOSNSRSP_O Not Study Related, Specify $200 char
EOS 9 EOSOTSPY_O Other, Specify $200 char

Table 8. An Example of the Fields Sheet for the EOS Form From an ALS

8

An ALS is the repository for all raw dataset names and variable attributes for a study, which are some of
the inputs for SDTM programming. SDTM programmers manually annotate CRFs at the beginning of
SDTM programming. The aCRF then guides programmers to develop SAS programs for SDTM datasets.
Moreover, it is one of the required documents for regulatory submission. Each annotation sets up the
one-to-one mapping from each raw dataset variable in a CRF to its mapped SDTM domain variable or
supplemental qualifier in each SDTM mapping program. If this could be directly used as the
logic/mapping rules by a SAS macro, it would be more beneficial to the programming, and automation
could be achieved. Hence, we store these annotations along with the metadata for raw datasets as
described above in a single spreadsheet called “master-annotation”, which is “semi-automatically”
developed per the availability of a study’s ALS. This allows a SAS macro to simultaneously import all the
mapping rules for all domains and utilize them in the SDTM automation macro, instead of having multiple
programmers individually annotate and develop programs for different SDTM domains.

As described above, we developed a spreadsheet file named master-annotation.xlsx as the repository
of all raw dataset names and variable attributes (variable name, label, and type) as specified in the ALS
along with CRF annotations mapping raw dataset variables to SDTM domains and their variables.
Furthermore, extra columns are added to the file to aid the macro in automating SAS code generation.

We start with variables (EDC DATASET NAME — VARIABLE LABEL) derived directly from the ALS as the
foundation for the master-annotation as the ALS includes raw dataset names, variable names, labels,
types, formats, and orders. Additional columns (SDTM DOMAIN — DECOD/TRT) are added in the master-
annotation to facilitate mapping those raw dataset variables to the corresponding SDTM domains. These
columns generally come from CRF Annotations. Extra columns (QLABEL — TRT ASSIGN) are designed
to assist the automation for certain SDTM variables. Please see Table 9 below for an example of how the
RADPOST (Post-Treatment Radiation Therapy) form is annotated in the master-annotation and Table 10

for a summary of these key columns (variables) in the master-annotation.

From ALS From CRF Annotation
r A \ p A .
EDC ORD. SUB
DATASET [ERIC DRAASIET VARIAEILE \VARIABLE NAME [VARIABLE LABEL =R SDTM VARIABLE |CATEGORY CATE DECOD/TRT
LABEL TYPE DOMAIN
NAME GORY
Post-Treatment Post-Treatment (CONCURRENT
RADPOST Radiation Therapy 1 char RADPOSTYN_STD Radiation Therapy? PR [NOT SUBMITTED)] RADIOTHERAPY RADIOTHERAPY
Post-Treatment .
RADPOST Radiation Therapy 2 Date RADPOSTSTDAT [Date of First Dose |PR PRSTDTC
Post-Treatment
RADPOST Radiation Therapy 3 Date RADPOSTENDAT [Date of Last Dose PR PRENDTC
Post-Treatment .
RADPOST Radiation Therapy 4 Numeric RADPOSTTD Total Dose PR PRDOSE
Post-Treatment .
RADPOST Radiation Therapy 5 char RADPOSTTDU_STD [Total Dose Unit PR PRDOSU
Post-Treatment . DOSSPEC in
RADPOST Radiation Therapy 6 char RADPOST_O Other, Specify PR SUPPPR
Post-Treatment . -
RADPOST Radiation Therapy 7 char RADPOSTSR_STD [Site of Radiation PR PRLOC
Post-Treatment . LOCSPEC in
RADPOST Radiation Therapy 8 char RADPOSTS_O Other, Specify PR SUPPPR
Post-Treatment PURPOSE in
RADPOST Radiation Therapy 9 char RADPOSTPU_STD ([Purpose PR SUPPPR
Assisting the Macro to Automate the SAS Code Generation
i \
EDC DATASET NAME ORDER |[QLABEL QORIG QEVAL GRPID TRT ASSIGN
RADPOST 1
RADPOST 2
RADPOST 3
RADPOST 4
RADPOST 5
RADPOST 6 Total Dose, Other, Specify CRF
RADPOST 7
RADPOST 8 Site of Radiation, Other, Specify CRF
RADPOST 9 Purpose CRF

Table 9. An Example of the Master-Annotation for the PR Domain (With Raw Dataset: RADPOST)

9

Column Column Content Origin Manual?
EDC DATASET NAME Raw dataset name ALS
EDC DATASET LABEL | Raw dataset label ALS
ORDER The order of variables specified in CRFs, one of the key variables used to sort ALS
intermediate datasets generated by %SDTM_Code_Generator
VARIABLE TYPE Variable type in raw dataset: Numeric, char, Date, Time, or Date & Time ALS Derived
VARIABLE NAME Variable name in raw dataset ALS
VARIABLE LABEL Variable label in raw dataset ALS
SDTM VARIABLE SDTM variable name, SDTM variable name for a specific test, QNAM in supplemental CRF Annotation Y
domain, or not submitted
CATEGORY Text to assign —CAT. Applicable to domains: DS, EG, FA, LB, QS, TR, VS CRF Annotation Y
SUB CATEGORY Text to assign --SCAT/FAOBJ. Applicable to domains: DS, EG, FA, LB, QS, TR CRF Annotation Y
DECOD/TRT Text to assign --TRT/--TEST/DSTERM/DSDECOD. Applicable to domains: DS, FA, CRF Annotation Y
PR, TR
QLABEL Assign QLABEL in supplemental domains Triplet to help map | User input Y
QORIG Assign QORIG in supplemental domains, with values: CRF, raw datas_et (mt(_ended to
Derived, or Assigned. variables in assist
. supplemental %SDTM_Code_
QEVAL Assign QEVAL in supplemental domains, e.g., “CLINICAL domains Generator with
STUDY SPONSOR” SAS code
GRPID Column to define the group (block) within a raw dataset indicating that variables in the | generation)
same group will be mapped to a specific intervention, occurrence, event,
measurement, or finding. Applicable to domains: DS, FA, PR, QS, TR, TU
TRT ASSIGN Column to aid automation and indicate extra coding is needed for the mapping of the
variables. Applicable to all finding domains along with DS, FA, PR, and SV

Table 10. Summary of the Key Variables in the Master-Annotation

The macro uses the variables above as its inputs to derive SDTM SAS programs. Table 11 shows an
example of SDTM date variables --DTC, --STDTC, or —-ENDTC along with raw dataset variables used to

derive them.
EDC EDC DATASET LABEL ORDER |VAR. TYPE |[VARIABLE NAME |VARIABLE LABEL SDTM SDTM
DATASET DOMAIN [VARIABLE
NAME
AE /Adverse Events 3 Date IAESTDAT Start Date IAE IAESTDTC
AE /Adverse Events 4 Time IAESTTIM Start Time IAE IAESTDTC
AE /Adverse Events 5 Date IAEENDAT End Date AE IAEENDTC
AE /Adverse Events 6 Time IAEENTIM End Time IAE IAEENDTC
EOS End of Study 1 Date EOSDAT End of Study Date DS DSSTDTC
EOS End of Study 5 Date EOSDEADT Death Date DM DTHDTC
EX1 Lymphodepleting Chemotherapy: Fludarabine 8 Date EX1STDAT \What was the treatment start date? |EX EXSTDTC
EX1 Lymphodepleting Chemotherapy: Fludarabine 10 Date EX1ENDAT \What was the treatment stop date? |EX EXENDTC
LBCHEM Local Lab - Chemistry 2 Date LBDAT Date of Collection LB LBDTC
VS /Adverse Events 2 Date VSDAT Date of Collection VS \VSDTC

Table 11. A Sample of Raw Dataset Date/Time Variables and Their Mapped SDTM Variable Names

From the Master-Annotation

Display 5 shows SAS code from %SDTM_Code_Generator that is used to generate the SAS code for
AE.AESTDTC and AE.AEENDTC in AE.sas. Of note, SDTM VARIABLE was renamed as variable for

convenience inside the macro as shown on lines 4 and 6. Display 6 shows the output SAS code

generated by Display 5 for AESTDTC and AEENDTC.

1 if (strip(variable_type)="Date' and index(variable_label,'Date')) or
2 (strip(variable_type)="Time' and index(variable_label,'Time')) then do;
if substr(reverse(strip(variable_name)),1,3)="TAD"' then

3

4 lines="' "| | "%map_dtc_date(_DATEVAR='| |strip(variable) |

5 else if substr(reverse(strip(variable_name)),1,3)="MIT' then

6 lines=" || *%map_dtc_time(_DATEVAR='||strip(variable)||', RAWTIME='
7 end;

', _RAWDATE='| |strip(variable_name)||');";

|strip(variable_name)||');";

Display 5. SAS Code from %SDTM_Code_Generator Used to Generate SAS Code Inside AE.sas for

AESTDTC and AEENDTC

10

Woh =

%map_dtc_date(DATEVAR=AESTDTC, RAWDATE=AESTDAT);
%map_dtc_time(DATEVAR=AESTDTC, RAWTIME=AESTTIM);
%map_dtc_date(DATEVAR=AEENDTC, RAWDATE=AEENDAT);

4 %map_dtc_time(DATEVAR=AEENDTC, RAWTIME=AEENTIM);

Display 6. SAS Code to Map Raw Dataset Variables to AESTDTC and AEENDTC Inside AE.sas

From the example above, the macro uses the columns from the master-annotation for derivation, instead
of needing to specify individual variable names from the raw datasets. This allows for the macro to be
used in multiple studies, even if their EDC databases are built from different vendors.

Column TRT ASSIGN is used to indicate additional derivation rules for certain SDTM variables. It is
restricted to one of the following keywords: Blank, “Y”, “TEST”, “COMBINE”, or a subset condition for
different classes of the SDTM domains. When combined with the columns SDTM VARIABLE,
CATEGORY, SUB CATEGORY, and DECOD/TRT, it helps set up the logic for the derivation of SDTM
domain variables and supplemental qualifiers: --CAT, --SCAT, --TEST, --TESTCD, --ORRES, --ORRESU,
QNAM, QLABEL, QORIG, QVAL, etc. Table 12 shows examples of how TRT ASSIGN is combined with
these other columns and the logic for the mapping and derivations of the relevant SDTM variables.

|Class of the |TRT ASSIGN |SDTM CATEGORY [SUB DECOD/ |Logic for Mapping and Derivation
Domains VARIABLE CATEGORY |[TRT
(Example)
1.1 |ALL Domains |Blank [NOT NA NA NA No mapping
SUBMITTED]
1.2 |ALL Domains |Blank Variable in main |NA NA NA Map VARIABLE NAME to Domain
domain Variable
1.3 |Findings (EG, |Blank --ORRESU when [NA NA NA Map VARIABLE NAME to --ORRESU
VS, TR) -TESTCD =77ZZ where --TESTCD =ZZZ
1.4 |ALL Domains [Blank QNAM in NA NA NA Map QNAM to SUPP--.QNAM,
Supplemental Map QLABEL to SUPP--.QLABEL,
Domain Map QORIG to SUPP--.QORIG,
Map VARIABLE NAME to SUPP--
.QVAL
2.1 |Interventions |Y [NOT PRCAT - PRTRT |[Map CATEGORY to PRCAT,
(PR) SUBMITTED] Map DECOD/TRT to PRTRT
2.2 |Findings Y [NOT FACAT FAOBJ - Map CATEGORY to FACAT,
About (FA) SUBMITTED] Map SUB CATEGORY to FAOBJ
2.3 |Findings (LB, |Y [NOT --CAT --SCAT - Map CATEGORY to --CAT,
QS, RS, TR, SUBMITTED] Map SUB CATEGORY to --SCAT
TU)
3 |Findings (EG, |TEST --ORRES when -- --TEST |Map DECOD/TRT to --TEST,
LB, PE, VS, TESTCD =222 Map ZZZ to --TESTCD,
QS, RS, TR, Map VARIABLE NAME to --ORRES
TU), Findings
About (FA)
4 |Supplemental |COMBINE QNAM in NA NA NA Concatenate the values of raw dataset
(SUPPSV) Supplemental variables by “,” before outputting them
Domain into QVAL for QNAM = “UNSAPERF”.
Please refer to [8]
5 |Supplemental |A Subset QNAM in NA NAA NA Output the records into supplemental
(SUPPPR) Condition Supplemental domain ONLY when a subset
Domain condition is satisfied

Table 12. Examples of How TRT ASSIGN is Combined With Other Columns to Derive Certain SDTM

Variables

There are five main scenarios according to the values of column TRT ASSIGN, and the following five

tables provide examples of these scenarios.

11

Scenario 1: Column TRT ASSIGN is Blank.

EDC EDC DATASET |[ORD. [VAR. |VARIABLE NAME VARIABLE LABEL |SDTM [SDTM VARIABLE QLABEL QORIG [TRT
DATASET |LABEL TYPE DOMAIN ASSIGN
NAME
AE Adverse Events |1 char |AEYN_STD Any AE AE [NOT SUBMITTED]
AE Adverse Events |2 char |AETERM AE Term AE IAETERM
AE Adverse Events |12 char |AESITYP_STD AESI Type AE IAESITY in SUPPAE AESI Type CRF
VS Vital Signs 1 char |VSPERF_VSALL_STD |Vital Signs Collected [VS [NOT SUBMITTED]
VS Vital Signs 2 Date |VSDAT Date of Collection |VS VSDTC
VS Vital Signs 12 char |VSMETHOD_OXYSAT |Oxygen Saturation (VS OXYSAT in SUPPVS Oxygen Saturation ([CRF
Method Method
VS Vital Signs 14 char |VSORRES_OXYSATU |Oxygen Saturation (VS VSORRESU when
Units VSTESTCD = OXYSAT
Table 13. An Example of a Master-Annotation Where TRT ASSIGN is Set to Blank
Scenario 2: Column TRT ASSIGN = “Y”.
EDC EDC DATASET |ORD. [VAR. |VARIABLE |VARIABLE LABEL [SDTM |SDTM CATEGORY SUB DECOD /TRT TRT
DATASET |LABEL TYPE [NAME DOMAIN |VARIABLE CATEGORY ASSIGN
NAME
CP Concomitant 1 char [CPYN_STD |[Surgical Therapeutic |PR [NOT CONCOMITANT Y
Procedures and Diag Procedure SUBMITTED] [PROCEDURES AND
Treatment TREATMENT
RADPRE |Prior Radiation (1 char [RADPREYN |Any Prior Radiation |PR [NOT PRIOR RADIOTHERAPY |Y
Therapy _STD Therapy Performed? SUBMITTED] |[RADIOTHERAPY
ECHO Echocardiogra |1 char ECHOYN Was ECHO FA [NOT ECHOCARDIOGRAM [ECHOCARDIO Y
m _STD Performed? SUBMITTED] [STATUS GRAM
LBCHEM |Local Lab - 1 char LBPERF_STD|Was sample LB [NOT CHEMISTRY LOCAL Y
Chemistry collected? SUBMITTED] LABORATORY
LBHM Local Lab - 1 char LBPERF_STD|Was sample LB [NOT HEMATOLOGY LOCAL Y
Hematology collected? SUBMITTED] LABORATORY
Table 14. An Example of a Master-Annotation Where TRT ASSIGN is Set to “Y”
Scenario 3: Column TRT ASSIGN = “TEST”
EDC EDC DATASET |ORDER |VAR. IVARIABLE VARIABLE LABEL [SDTM SDTM VARIABLE CATEGORY |SUB DECOD /TRT |TRT
DATASET |LABEL TYPE NAME DOMAIN CATEGORY ASSIGN
NAME
LBCHEM |Local Lab - 3 Numeric |GLUCOSE Glucose LB LBORRES when Glucose TEST
Chemistry | ORRES LBTESTCD = GLUC
LBCHEM |Local Lab - 6 Numeric |BILITOT Total Bilirubin LB LBORRES when Bilirubin TEST
Chemistry | ORRES LBTESTCD = BILI
ECHO Echocardiogra |3 char ECHOORRES Ejection Fraction |FA FAORRES when Ejection TEST
m FATESTCD = LVEF Fraction
LS Lugano Staging |4 char LSSTAGE _STD (Lugano Staging at |FA FAORRES when Lugano Staging |[TEST
Study Entry FATESTCD = STAGE at Study Entry

Table 15. An Example of a Master-Annotation Where TRT ASSIGN is Set to “TEST”

Scenario 4: Column TRT ASSIGN = “COMBINE”

This is a special case to handle the concatenation of raw dataset variables prior to inclusion in SUPPSV
with QNAM = “UNSAPERF” and QLABEL = “Unscheduled Assessments Performed”. Please refer to
APPENDIX 3 in [8] for the resulting SAS code.

EDC EDC DATASET |ORD. |VAR. IVARIABLE |VARIABLE SDTM SDTM VARIABLE QLABEL QORIG [TRT ASSIGN

DATASET |LABEL TYPE NAME LABEL DOMAIN

NAME

uv Unscheduled |15 Numeric |[EG ECG SV UNSAPEREF in SUPPSV [Unscheduled Assessments Performed|CRF [COMBINE
Subject Visit

uv Unscheduled (32 Numeric |CHEM Local Lab SV UNSAPERF in SUPPSV |Unscheduled Assessments Performed|CRF |COMBINE
Subject Visit Chemistry

uv Unscheduled (33 Numeric [COAG Local Lab SV UNSAPERF in SUPPSV |Unscheduled Assessments Performed|CRF |COMBINE
Subject Visit Coagulation

uv Unscheduled (35 Numeric |HEM Local Lab SV UNSAPERF in SUPPSV |Unscheduled Assessments Performed|CRF |COMBINE
Subject Visit Hematology

uv Unscheduled |37 Numeric |PG Local Lab SV UNSAPERF in SUPPSV |Unscheduled Assessments Performed|CRF |COMBINE
Subject Visit Pregnancy Test

uv Unscheduled (51 Numeric |VS Vital Signs SV UNSAPERF in SUPPSV |Unscheduled Assessments Performed|CRF |COMBINE
Subject Visit

Table 16. An Example of a Master-Annotation Where TRT ASSIGN is Set to “COMBINE”

Scenario 5: Column TRT ASSIGN specifies a subset condition.

12

This is another special case to output raw dataset variables to supplemental datasets per a subset
condition. In the example below (Table 17), one CRF (Bone Marrow Aspirate/Biopsy — Lymphoma)
collects data for both PRTRT = “BONE MARROW ASPIRATION” and PRTRT = “BONE MARROW
BIOPSY” in the same record. PR.sas must separate them in SUPPPR for each category; otherwise, there
will be duplicate records. Therefore, a condition for the differentiation is added. Display 7 shows the SAS
code from PR.sas for generating different SUPPPR data blocks with QLABEL = “Morphology” by adding
the condition from the TRT ASSIGN column.

EDC EDC DATASET [ORD. [VAR. IVARIABLE |VARIABLE SDTM ISDTM VARIABLE QLABEL QORIG [TRT ASSIGN

DATASET |LABEL TYPE NAME LABEL DOMAIN

NAME

LBBMLYM |Bone Marrow |4 char BMAORRES|Morphology PR BMINTP in SUPPPR [Morphology |CRF PRTRT='BONE MARROW ASPIRATION'
/Aspirate/Biopsy | BMINTP_S
- Lymphoma TD

LBBMLYM [Bone Marrow (5 char BMAORRES[IHC Result PR IHCRES in SUPPPR [IHC Result |CRF |PRTRT='BONE MARROW ASPIRATION'
/Aspirate/Biopsy | IHCRES_S
- Lymphoma TD

LBBMLYM [Bone Marrow (7 char BMAORRES [Evidence Of PR DISSTATE in Evidence of [CRF [PRTRT='BONE MARROW ASPIRATION'
IAspirate/Biopsy | DISSTATE |Disease SUPPPR Disease
- Lymphoma | STD

LBBMLYM |Bone Marrow |11 [char BMBORRES|Morphology PR BMINTP in SUPPPR [Morphology |CRF |PRTRT='BONE MARROW BIOPSY*
IAspirate/Biopsy | BMINTP_S
- Lymphoma TD

LBBMLYM |Bone Marrow (12 char BMBORRES |IHC Result PR IHCRES in SUPPPR [IHC Result |CRF PRTRT='"BONE MARROW BIOPSY"
/Aspirate/Biopsy | IHCRES_S
- Lymphoma TD

LBBMLYM (Bone Marrow |14 char BMBORRES [Evidence Of PR DISSTATE in Evidence of |CRF PRTRT='"BONE MARROW BIOPSY'
/Aspirate/Biopsy | DISSTATE |Disease SUPPPR Disease
- Lymphoma | STD

Table 17. An Example of a Master-Annotation Where TRT ASSIGN Specifies a Subset Condition

if not missing(BMAORRES_BMINTP_STD) and PRTRT='BONE MARROW ASPIRATION® then doj;
gnam="BMINTP";
glabel="Morphology";
qval=strip(BMAORRES BMINTP STD);
qorig="CRF";
6 qeval="";
7 output;
8 end;
9 if not missing(BMBORRES_BMINTP_STD) and PRTRT='BONE MARROW BIOPSY' then do;
16 gnam="BMINTP";

TR W N R

11 glabel="Morphology";

12 qval=strip(BMBORRES BMINTP STD);
13 qorig="CRF";

14 qeval="";

15 output;

16 end;

Display 7. SAS Code From PR.sas for Generating Different SUPPPR Data Blocks With QLABEL =
“Morphology”

For findings domains, we often see cases where a raw dataset collects multiple types of findings
horizontally within the same record. However, for SDTM, that horizontal dataset is converted to a vertical
format with one type of finding per record. To account for these blocks of data, we added GRPID to the
master-annotation to indicate which variables need to be grouped together. %SDTM_Code_Generator
utilizes GRPID to output different blocks for different values of GRPID. Table 18 shows an example of a
master-annotation where GRPID aids SDTM automation. The same CRF SCTPOST (“Stem Cell
Transplant Post Treatment”) collects data from both “Autologous Stem Cell Transplant” and “Allogeneic
Stem Cell Transplant”. Display 8 shows SAS code from PR.sas that correctly maps the two different
transplant types into two separate blocks.

13

EDC EDC DATASET LABEL ORDER [GRPID [VARIABLE |VARIABLE NAME |VARIABLE LABEL SDTM |SDTM VARIABLE
DATASET TYPE DOMAIN

NAME

SCTPOST Stem Cell Transplant Post Treatment |1 1 Autologous Stem Cell Transplant PR

SCTPOST Stem Cell Transplant Post Treatment |2 1 char SCTAUTOYN_STD Autologous Stem Cell Transplant Post PR [NOT SUBMITTED]
SCTPOST Stem Cell Transplant Post Treatment |3 1 Date SCTAUTODAT Date of Autologous Stem Cell Transplant |PR PRSTDTC

SCTPOST Stem Cell Transplant Post Treatment |4 1 char SCTAUTOREL_STD Progressed/Relapsed After the Transplant(PR RELAPYN in SUPPPR
SCTPOST Stem Cell Transplant Post Treatment |5 1 Date SCTAUTORELDAT Date of Progression/Relapse PR RELAPDTC in SUPPPR
SCTPOST Stem Cell Transplant Post Treatment |6 2 Allogeneic Stem Cell Transplant PR

SCTPOST Stem Cell Transplant Post Treatment |7 2 char SCALLOTYN_STD Allogeneic Stem Cell Transplant After PR [NOT SUBMITTED]
SCTPOST Stem Cell Transplant Post Treatment (8 2 Date SCTALLODAT Date of Allogeneic Stem Cell Transplant [PR PRSTDTC

SCTPOST Stem Cell Transplant Post Treatment (9 2 char [SCTALLOPREL_STD Progressed/Relapsed After the Transplant|PR RELAPYN in SUPPPR
SCTPOST Stem Cell Transplant Post Treatment (10 2 Date SCTALLORELDAT Date of Progression/Relapse PR RELAPDTC in SUPPPR

Table 18. An Example of a Master-Annotation Where GRPID Indicates the Variables That Need
Grouping

1 if strip(SCTAUTOYN STD)="Y' and SCTPOST then PRCAT='STEM CELL TRANSPLANT POST-CTX112 TREATMENT';
2 if strip(SCTAUTOYN STD)="Y' and SCTPOST then PRTRT='AUTOLOGOUS STEM CELL TRANSPLANT';

3 %map_dtc_date(DATEVAR=PRSTDTC, RAWDATE=SCTAUTODAT);

4 if SCTPOST and not missing(PRSTDTC) then output;

5

6 call missing (PRCAT,PRTRT,PRSTDTC);

7 if strip(SCALLOTYN _STD)="Y' and SCTPOST then PRCAT='STEM CELL TRANSPLANT POST-CTX112 TREATMENT';
8 if strip(SCALLOTYN STD)="Y' and SCTPOST then PRTRT='ALLOGENIC STEM CELL TRANSPLANT';

9 %map_dtc_date(DATEVAR=PRSTDTC, RAWDATE=SCTALLODAT);

1@ if SCTPOST and not missing(PRSTDTC) then output;

Display 8. SAS Code from PR.sas With Two Separate Blocks for Mapping Data From “Autologous
Stem Cell Transplant” and “Allogeneic Stem Cell Transplant”

From the examples above, it is easy to understand that the master-annotation provides the macro with
directions to directly map raw dataset variables to SDTM variables. The key variables/columns specified
in Table 10 are the “pillars” of the macro, and SDTM standards are the “rules/logic” to be followed. The
macro uses all of these to generate SAS code. The relevant rows of the master-annotation are processed
by the macro to generate the SAS code for each SDTM mapping SAS program. However, the “pillars”
and “rules/logic” are seldom changed (except for the up-versioning of the SDTMIG) while the rows of the
master-annotation change from study to study. Once the macro is very well developed, it can be adapted
for other studies with some new or updated directions while keeping most of the existing framework.

However, the master-annotation must be updated to account for new study CRFs. This update can lead
to macro modifications to incorporate new additional domains or new annotations due to CRF changes
intended to meet a new requirement, which can occur constantly in oncology studies. For example,
SDTM TR domain (Tumor/Lesion Results) is applied to both liquid tumor studies and solid tumor studies.
However, the lesion assessments for these two types of oncology studies have totally different data
collection, leading to different CRFs and annotations.

The vertical structure of raw dataset variable names and their attributes in a master-annotation provides
the macro with an advantage over SDTM mapping templates. The macro uses a single column
VARIABLE NAME to read each raw dataset variable name one by one to generate a SDTM SAS
program for a domain. When the raw dataset variable names change, there is very little impact on the
macro as the changes are automatically reflected in the master-annotation’s VARIABLE NAME column.
In contrast, raw dataset variable name changes have a negative impact on SDTM mapping templates as
the user needs to manually update variable names within a template program. This further shows a
benefit of this new approach.

Furthermore, all SDTM variables and their annotations are more accessible to users in the form of the
master-annotation spreadsheet compared to an annotated case report form (aCRF). Users can utilize

14

spreadsheet functionalities, such as sorting and filtering, to quickly locate specific variables and their
annotations. Users can easily review variables for a specific form or SDTM domain without needing to
scroll through or go back and forth between multiple pages of an aCRF. This master-annotation
spreadsheet is not only a wonderful tool for SDTM automation and programming but can also serve as a
great resource for ADaM programming.

Due to the dissimilarity and varying complexity of different CRFs from different studies, it is an
unreasonable expectation that the macro can achieve 100% automation for different studies, even if
these studies are from same compound within the same company.

The more standardized CRFs and raw dataset variable attributes become, the higher the level of
automation that can be achieved from the macro! While that standardization is the best practice, it
requires much more work to achieve. Even with a high degree of standardization, there are still minor
deviations in clinical trials.

The challenging question is what the expected level of automation is and what cost the organization is
willing to pay—the cost being the risk of missing timelines and the amount of resource investment. Striking
the right balance is vital to the team for short-term and long-term achievement. The more the macro
development aims to future-proof, the more time and resources it will take. If the development of the
macro were only dedicated to the current study, it would require fewer resources and could meet the
timelines. In our case, 100% automation is not expected, and the output SAS programs can still be
modified and updated by the users, especially for handling external datasets. This requires less effort to
develop the macro and makes it easier to meet the timelines, and the simplicity of the macro makes it
easily adaptable for new studies as well. This is our strategic approach with an adaptive mindset! This
approach is very feasible for relatively small sponsors and CROs, who have fewer resources and tight
timelines, for there is no requirement of huge efforts to standardize CRFs or raw dataset variable
attributes nor any requirement of expertise in other computer languages, such as Structured Query
Language (SQL) for script creation. This is the reason why our paper is titled as “A Practical Approach
to Automating SDTM”.

A clinical trial usually has some external data, e.g., central safety lab, biomarkers, imaging data (MRI/CT,
PET scan) from Central Imaging Services, etc. They are typically stored outside the EDC database, and

their metadata are specified by Data Transfer Agreements (DTA) from different vendors. The finalization

of DTAs and the first data transfer usually come much later than the first EDC raw data extract.

The approach in this paper focuses on dealing with CRF data, not external data. The main reasons to
exclude external data for SDTM automation are the timing of its availability (for both metadata and actual
data) and simplifying the development of the macro to balance the level of automation with the cost of
meeting timelines.

Once the DTAs are finalized and the external data are available, the related SDTM mapping SAS
programs can be updated by inserting some code to the existing SAS programs for the inclusion of
external data. Please refer to [8] for an example of how external data are handled for the subject visits
(SV) domain programming.

When the external datasets are ready for inclusion, the team can decide if the new programming should
be added to either the %SDTM_Code_Generator or the related individual SDTM SAS program. The
decision requires balancing the generalization of the macro for future use with the spending of more
time/resources in updating the macro and its potential impact of timelines.

One can leverage the existing master-annotation as an automation template for new studies. We will
explain the process from our working experience with two oncology studies.

15

We completed SDTM programming for two studies, and their EDC databases were both built by
Medidata’s Rave. Let us name them as Study-101 and Study-102, respectively.

SDTM programming for Study-101 was first completed at the very early stage of the study. Hence, its
master-annotation-101.xIsx and %SDTM_Code_Generator had been fully developed. Before starting to
work on SDTM automation for Study-102, we compared its ALS with Study-101’s and got the following
five output files shown in Table 19.

Output | Output File Label Function
File
Name
F1 Common variable names from Identify discrepancies in variable attributes, which could potentially impact the
common datasets macro for Study-102.
e.g., the raw dataset variable IE.IETESTCD is a character variable in Study-101
but numeric in Study-102. Raw dataset variable IETESTCD being numeric is
problematic for SDTM programming since IETESTCD is a standard SDTM
variable that should be character.
F2 All variable names only included Identify variables potentially being omitted from Study-102.
in Study-101 e.g., Raw variables UV.UVREAS and UV.UVREAS_O (“Reason for Unscheduled
Visit” and “Other, Specify”) were in Study-101 but not in Study-102.
F3 All variable names only included Identify variables that need new annotations.
in Study-102 e.g., CM.CMDOSFRM, ICE.ICETOTAL (“ICE Total Score”) were added to the CM
and ICE forms in Study-102.
F4 All variable names only included Identify variables with different variable names from the same CRF.
in Study-101 among common e.g., ICE.IAYN (“Was ICE Assessment performed?”) from Study-101 vs. ICE.
datasets ICEPERF from Study-102.
F5 All variable names only included
in Study-102 among common
datasets

Table 19. Five Outputs from the Comparison of ALSs between These Two Studies

Per these five files, the summary tables are shown by Table 20 and Table 21, which show the similarities
(same CRF names and same variable names from the same CRF) and dissimilarities of CRFs for these
two studies. Out of 80 CRFs in Study-101 and 67 CRFs in Study-102, there were 50 common CRFs
between the two studies, and a sample of these common forms is shown in Table 22. Not surprisingly,
they are from standard safety domains.

Study Number | Number of CRFs | Number of Common | Number and Percentage | Total Number of Variables
CRFs of Unique CRFs
Study-101 80 50 (62.5%) 30 (37.5%) 906
Study-102 67 50 (74.6%) 17 (25.4%) 678
Table 20. Tabulation of CRFs From Two Studies
Study Total Number of Variables | Number and Percentage | Number and Percentage of Unique Variables
of Common Variables
Study-101 906 410 (45%) 496 (55%)
Study-102 678 410 (60%) 268 (40%)
Table 21. Tabulation of CRF Variables From Two Studies
EDC DATASET NAME | EDC DATASET LABEL SDTM DOMAIN
AE Adverse Events AE
CM Prior and Concomitant Medications CM
DM Demographics DM
ECHO Echocardiogram / MUGA FA
EG 12- Lead ECG - Single Timepoint EG
EN Enroliment DS
EOS End of Study DS
IC Informed Consent DS
IE Inclusion and Exclusion IE
MH Medical History MH
SS Survival Status SS
SUBJ Subject Registration DM
VS Vital Signs VS

Table 22. Examples of Common CRFs From Two Studies

16

The EDC DATASET NAME (FormOID) and VARIABLE NAME (FieldOID) were combined as the key to
merge the ALS of Study-102 with master-annotation-101.xIsx, bringing in the other columns (CRF
annotations and other variables as specified in Table 10) of master-annotation-101.xIsx for CRFs and
variable names that were common to these two studies. This newly augmented file was used as a starting
point to complete master-annotation-102.xIsx, and users only needed to fill in the other columns (e.g.,
CRF annotations) for new CRFs and variables that were unique to Study-102. Table 23 below shows an
example of master-annotation-102.xIsx with the first column indicating the variables that need additional
manual work to complete their master-annotation record.

Screened?

Need New EDC SDTM EDC DATASET LABEL Order VARIABLE NAME VARIABLE LABEL SDTM VARIABLE
Annotation DATASET DOMAIN

NAME

EN DS Enroliment 1 ENRSF_STD Was Subject Enrolled? [NOT SUBMITTED]

EN DS Enrollment 3 ENRDAT Enrollment Date DSSTDTC

EN DS Enrollment 4 ENPHASE_STD Study Phase PHASEENR in SUPPDS

EN DS Enrollment 5 ENPART_STD Study Part PARTENR in SUPPDS
Y EN DS Enrollment 6 ENCOHRT_STD Study Cohort COHORT in SUPPDS

EN DS Enrollment 8 ENSFDAT Screen Fail Date DSSTDTC

EN DS Enrollment 9 ENRSP_STD Screen Failure Reason DSTERM

EN DS Enrollment 10 ENRESCR_STD Was Subject Re SUBJRESC in SUPPDS

ECHO

Echocardiogram / MUGA

[

ECHOYN_STD

Was ECHO or MUGA
performed?

[NOT SUBMITTED]

ECHO

Echocardiogram / MUGA

N

ECHOMETH_STD

If Yes, method of
nent performed?

ECHOMETH in SUPPFA

ECHO

Echocardiogram / MUGA

w

ECHODAT

Test Date

FADTC

ECHO

Echocardiogram / MUGA

IN

ECHOORRES

Ejection Fraction

FAORRES when
FATESTCD = LVEF

ECHO

FA

Echocardiogram / MUGA

5

ECHOORESU_STD

Ejection Fraction Units

FAORRESU

Table 23. An Example of Master-Annotation-102.xIsx

Per Table 21, we had 410 variables that were in both Study-101 and Study-102 and 268 variables unique
to Study-102 that needed manual work to complete master-annotation-102.xIsx. Thus, 60% of all
variables for Study-102 were “borrowed” from Study-101, and only 40% of the variables required extra
manual work for master-annotation completion. (The majority of that 40% was from the CRFs for efficacy
data.) By utilizing the existing master-annotation for Study-101, huge time savings and high efficiency
were achieved for Study-102! Higher standardization of CRFs could contribute to even more high-quality
programming efficiency across studies!

For a new study, once the master-annotation and SDTM specifications are finalized by leveraging the
method introduced in the previous section, %SDTM_Code_Generator can then be adapted to the new
study for SDTM automation.

The five outputs from Table 19 should be carefully reviewed. The SAS code for
%SDTM_Code_Generator should be carefully checked for mentions of the variables identified from the
review, especially those from F1, F4, and F5 which could potentially require some SAS coding updates.
Special attention should also be paid to the variables flagged as “Need New Annotation” from F3 (see
Table 23 for some examples) as these might require updates to the macro’s SAS code. Variables from F2
should not have any impact.

The macro’s output files (i.e., SDTM mapping SAS programs) should also be carefully reviewed,
especially for SAS code pertaining to variables in F3. The programming validation process should be
strictly followed. Please refer to the following section for the scalability of this new approach.

Our working experience is that there was almost no change of the macro for the safety domains (except
for IEDTC in IE.sas due to the difference between two EDC database builds), but some changes had
been made to the efficacy domains such as RS, TR, and TU. While we were finalizing the macro for the
second study, we also updated the macro for the first study to make it more generalized to both studies. It
has been an adaptive process.

17

So far, we have illustrated this new practical approach to automating SDTM. For the first study, one
needs to develop the master-annotation spreadsheet (but can leverage existing CRF specifications) and
the %SDTM_Code_Generator macro from scratch. However, it is still a more efficient and less error-
prone process than the SAS template programs suggested in Table 1. Once one has fully developed the
master-annotation and macro for a clinical study, one can adapt them for new studies.

The ease of adaptability depends on the similarity of CRF designs and specifications of new studies
compared to the first study. Table 24 below lists different scenarios of what new studies’ EDC or CRF
setup may be like relative to the first study.

Scenario of A New CRF Specifications of An Similarity and Dissimilarity of Safety and
Study Per An EDC EDC Database Efficacy Data

Vendor

Same EDC vendor Similar CRF Specifications Similar CRF designs and CRF specifications for

safety data but dissimilar CRF specifications for
efficacy data if different indications

Similar CRF designs and CRF specifications for
both safety data and efficacy data if the same
indication

Different EDC vendors Different CRF Specifications Similar CRF design for safety data but dissimilar
CREF design for efficacy data if different indications

Similar CRF design for both safety data and
efficacy data if the same indication

Table 24. Different Scenarios of a New Study’s EDC or CRF Setup

In the case where new studies use the same EDC vendor, we’d expect CRF form design and
specifications to be relatively similar, especially for safety data. Thus, we can easily leverage and adapt
the existing master-annotation and %SDTM_Code_Generator for those new studies. Table 25 provides
suggestions on how to adapt our SDTM automation tools for new studies with similar CRF specifications
due to using the same EDC vendor.

Scenario of A New Study Master-Annotation %SDTM_Code_Generator

Similar CRF Specifications for safety Leverage the existing Add new programming to account for
data but dissimilar CRF design for master-annotation from | new/different efficacy data

efficacy data the first study

Similar CRF Specifications for both May need a little tweaking

safety data and efficacy data

Table 25. Suggestions for Adaptation to New Studies With EDC Databases Built by the Same
Vendor

In the case where new studies use a different EDC vendor, we'd expect CRF form design to be
somewhat similar but the actual CRF specifications to be different. More manual work will need to be
done to update the SDTM automation tools, in particular the master-annotation spreadsheet, to account
for the different CRF specifications. Table 26 provides suggestions on how to adapt our SDTM
automation tools for new studies with different CRF specifications due to using different EDC vendors.

Scenario of A New Study Master-Annotation %SDTM_Code_Generator

Different CRF Specifications: Similar Consider as a new study. Add new programming to account for
CRF design for safety data but Leverage CRF specifications | new/different efficacy data

dissimilar CRF design for efficacy and annotations for master-

data annotation. However, need to

Different CRF Specifications: Similar | manually fill in key columns May need a little tweaking

CREF design for both safety data and from Table 10 where the

efficacy data origin is not “ALS”.

Table 26. Suggestions for Adaptation to New Studies With EDC Databases Built by Different
Vendors

18

INTRODUCTION TO OUR VALIDATION PROCESS FOR SDTM PROGRAMMING

The development of %SDTM_Code_Generator starts only after CRF annotations and SDTM
specifications pass the review and validation process as they are the inputs of the macro as shown in
Figure 2.

The traditional approach for SDTM dataset validation requires programmers to develop an independent
mapping SAS program. This double programming requires more resources and time since it essentially
doubles development efforts.

Our SDTM programming validation consists of the following three steps: code reviewing, real data testing,
and developing independent mapping SAS programs to validate relatively complicated SDTM datasets as
needed per the team’s decision. This validation process validates both the macro and each SDTM
mapping SAS program. Figure 4 below depicts the new validation process.

Raw DataiAvaiIabIe

Validator: Walk
Through Each Identify Domains
Data Block After for Independent
the Execution of Programming
SAS Code Validation

Macro Developer

Generate Each SDTM & Validator:

Mapping SAS Review Each
Program SDTM SAS

Program

%SDTM_Code_Generator:

Complete

Validation Finalize the

SDTM
Datasets

Real Data Testing
- Make sure the execution of
SAS code is expected &
meets the requirements
- Could repeat several times
for the accumulating real
data as the study is ongoing

Developing Independent
Mapping SAS Program

- Identify relatively complicated
domains per the team’s decision

- Develop independent SAS
programs to validate SDTM
datasets by PROC COMPARE

Code Reviewing
- Identify and fix bugs
- Make sure each
program meet the
requirements logically

Figure 4. The Logic Flow of Our SDTM Programming Validation Process

When each SDTM mapping SAS program (e.g., DM.sas) is generated from the macro call, the macro
developer and users work together to review the code to identify bugs before the testing phase until they
make certain that the coding logic meets domain requirements.

Once raw data are available, each SDTM mapping SAS program is tested by using real data. Users walk
through each data block to make sure that the execution is as expected and meets the requirement. This
step also includes retesting after bug fixing, and this could repeat several times for the accumulating real
data while the study is ongoing until the user ensures that the SAS program is thoroughly tested and
meets the requirements of the domain.

The team also identifies and decides which SDTM domains need traditional totally independent
programming validation. For example, the TR (Tumor/Lesion Results) domain from one study included
data from 13 CRFs, which had 190 variables in total (Table 27), so we developed an independent SAS
program to validate the TR domain.

CRF Name | EDC Raw Data Label

INL Lesion Assessment - New Lesion - CLL/SLL

INTL1 Lesion Assessment - Non-Target Lesions - Baseline - CLL/SLL
INTL2 Lesion Assessment - Non-Target Lesions - Post-Baseline - CLL/SLL
ITL1 Lesion Assessment - Target Lesions - Baseline - CLL/SLL

ITL2 Lesion Assessment - Target Lesions - Post-Baseline - CLL/SLL
NL Lesion Assessment - New Lesion

NTL1 Lesion Assessment - Non-Target Lesions — Baseline

NTL2 Lesion Assessment - Non-Target Lesions - Post-Baseline

ORG Organ Enlargement Assessment

PET1 PET Scan- Baseline

PET2 PET Scan- Post-Baseline

19

CRF Name | EDC Raw Data Label
TL1 Lesion Assessment - Target Lesions - Baseline
TL2 Lesion Assessment - Target Lesions - Post-Baseline

Table 27. An Example of 13 Source CRFs for the TR Domain

Solid SDTM programming expertise and working experience from the macro developer and the users can
shorten the development process and is the key to high quality delivery of SDTM datasets. This new
approach to automating SDTM is user-friendly as users can directly review the output code (instead of
facing a "black box") and test it with real data, ensuring that each SDTM dataset they produce is of the
highest quality. Since only a fraction of SDTM datasets need independently developed SAS programs for
programming validation, a lot of time and resources are saved compared to the traditional way of
validating all SDTM datasets or the situation where a sponsor must have an in-house or outsourced
SDTM programming team independently develop SDTM SAS programs to validate the automated SDTM
datasets provided by vendors.

How does one avoid accidental omissions of raw dataset variables from SDTM, which would be a failure
of SDTM programming? Given limited resources and timelines, it is not feasible to manually review each
raw dataset variable against the targeted SDTM SAS mapping program(s). Therefore, automation to
detect these omissions is the key to the solution for success. Once the omitted variables are detected, the
errors can be fixed. Hence, this step guarantees all raw dataset variables are accounted for in SDTM
programming.

Another functionality of the macro %SDTM_Code_Generator is that it can automatically detect any raw
dataset variables unmapped in SDTM. As mentioned in an earlier section, the SAS code generated by
our macro is saved in a SAS dataset before it is output to a SDTM mapping SAS program. This SAS
dataset contains all variables from the master-annotation specified in Table 10 in addition to the
previously mentioned lines and _order variables. Each call of the macro merges this dataset with the
master-annotation by EDC DATASET NAME and VARIABLE NAME for a specific domain. Any records
that have non-missing values for EDC DATASET NAME and VARIABLE NAME but are missing lines are
warning signs that those raw dataset variables may not have been mapped or included in the SDTM
mapping SAS program. One exception would be the records where SDTM VARIABLE = “[NOT
SUBMITTED]”, which marks raw dataset variables that are intentionally not submitted. Table 28 shows an
example of raw dataset variable AENOW from the AE form, whose omission was detected by the macro.
However, as indicated by its SDTM VARIABLE column, AENOW was intentionally not mapped to any
SDTM datasets.

EDC DATASET EDC DATASET VARIABLE NAME | VARIABLE SDTM DOMAIN SDTM VARIABLE
NAME LABEL LABEL
AE Adverse Events AENOW Form last updated | AE [NOT
(derived for edit SUBMITTED]
check)

Table 28. An Example of Raw Dataset Variable(s) That Are Not Mapped to SDTM AE as Identified
by %SDTM_Code_Generator

It is very typical for the EDC database to change due to a variety of reasons, such as protocol changes,
EDC database build errors, etc. The newly updated ALS or CRF specifications are provided along with a
document, such as a “Database Change Request Form”. The simple solution is to use SAS
programming to compare the new CRF specifications to the original one. The output file can help the
team pinpoint the changes to examine the impact on SDTM programming. The worst-case scenario is to
consider it as a new study. The previous sections present how to leverage the existing master-annotation
and %SDTM_Code_Generator for a new study.

We experienced a situation where one study’s ALS was updated three months after the EDC database
was in place. The comparison between these two ALS files showed that two safety lab tests had been

20

added and one variable’s label had been changed. We manually added these tests into master-
annotation and reran the macro to generate LB.sas. After reviewing the mapping sections for these two
tests in the output LB.sas and confirming that they met our requirements, we finished our update process
for SDTM LB programming.

This is another example that further illustrates what a powerful tool CRF specifications are for SDTM
automation.

As introduced above, CRF specifications from an EDC database (or an ALS) serve as the repository of all
raw dataset names and their variable attributes in a study. If the CRF specifications from an EDC
database or the ALS were not available for any reason, one would need to use the SAS PROC
CONTENTS or PROC DATASETS procedure to retrieve the metadata from the validated test data or the
first production transferred data. However, there are typically a lot of variables beyond those collected on
CRFs, e.g., intermediate variables dedicated to database setup. Hence, one would have to spend some
time in manually identifying which variables should be included in a file serving as simulated CRF
specifications by cross-checking CRF annotations one-by-one. Once the simulated CRF specifications
are finalized, one can generate a master-annotation spreadsheet and follow the approach introduced in
the previous sections for SDTM automation.

This paper presented a new approach to automating SDTM using a metadata-driven method that
leverages CRF specifications and SDTM standards. We compared the workflow between our new
approach and the standard one. We introduced our master-annotation spreadsheet, which leverages
CRF specifications from an EDC database (in particular, the Architect Loader Specification of Medidata’s
Rave EDC), and our macro %SDTM_Code_Generator. We discussed our experience on two different
types of oncology studies and demonstrated the practicality of our new approach through its efficiency,
flexibility, transparency, and scalability.

We are confident that the macro will become more mature as our new approach is applied to more
studies down the road. The intent of this presentation is to share our ideas with readers to aid them in
automating SDTM with much more efficiency and higher quality that is applicable across multiple clinical
studies within an organization.

[1] U.S. Department of Health and Human Services, Food and Drug Administration, Study Data Technical
Conformance Guide: Technical Specifications Document. October 2023. Available at
https://www.fda.gov/media/153632/download

[2] Keith Hibbetts, Eli Lilly and Company, Automating SDTM: A Metadata-Driven Journey, PharmaSUG
2023

[3] Xiangchen (Bob) Cui; Scott Moseley, and Min Chen. A Cost-Effective SDTM Conversion for NDA
Electronic Submission. Proceedings of the Pharmaceutical SAS® Users Group Conference, PharmaSUG
2011

[4] Xiangchen (Bob) Cui; Hao Guan, Min Chen, and Letan Lin. Automate the Process to Ensure the
Compliance with FDA Business Rules in SDTM Programming for FDA Submission. DIA 2018 Global
Annual Meeting Professional Poster; Proceedings of SAS Global Forum 2019; Proceedings of the
Pharmaceutical SAS® Users Group Conference, PharmaSUG 2019

[5] FDA Validator Rules. December 2022. Available at https://www.fda.gov/industry/fda-data-standards-
advisory-board/study-data-standards-resources

[6] CDISC Study Data Tabulation Model and SDTMIG v3.4 at http://www.cdisc.org/sdtm

21

https://www.fda.gov/media/153632/download
https://www.fda.gov/industry/fda-data-standards-advisory-board/study-data-standards-resources
https://www.fda.gov/industry/fda-data-standards-advisory-board/study-data-standards-resources
http://www.cdisc.org/sdtm

[7] Roman Radelicki; Swapna Pothula. End to End SDTM Automation: A Metadata Centric Approach.
PHUSE US Connect 2019

[8] Xiangchen (Bob) Cui; Jessie Wang, and Min Chen. A New Approach to Automating the Creation of
Subject Visits (SV) Domain. Proceedings of the Pharmaceutical SAS® Users Group Conference,
PharmaSUG 2024

Appreciation goes to PK Morrow for her invaluable review and comments.

Your comments and questions are valued and encouraged. Contact the author at:

Name: Xiangchen (Bob) Cui, Ph.D.
Enterprise: CRISPR Therapeutics AG
Address: 105 West 15t Street

City, State ZIP: Boston, MA 02127
Work Phone: 908-240-4086

E-mail: xiangchen.cui@crisprtx.com

Name: Min Chen

Enterprise: CRISPR Therapeutics AG
Address: 105 West 1st Street

City, State ZIP: Boston, MA 02127
Work Phone: 857-928-4347

E-mail: min.chen@crisprtx.com

Name: Jessie Wang

Enterprise: CRISPR Therapeutics AG
Address: 105 West 15t Street

City, State ZIP: Boston, MA 02127
Work Phone: 214-668-2107

E-mail: jessie.wang@crisprtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Any brand and product names are trademarks of their respective companies.

22

mailto:xiangchen.cui@crisprtx.com
mailto:min.chen@crisprtx.com
mailto:jessie.wang@crisprtx.com

SDTM Macro Name | Description SDTM Example Macro Call
Variable Domains
--DTC map_dtc_date | Derive -DTC All Domains | %map_dtc_date(DATEVAR=AESTDTC,_RAWDATE=AESTDAT);
and variables when there except for %map_dtc_time(_ DATEVAR=AESTDTC,_RAWTIME=AESTTIM);
map_dtc_time | are partial dates DM and
SV
RACE, map_race Derive RACE DM, %map_race(_ NUMFL=Y,_VAR=RACE1 RACE2 RACE3 RACE4 RACE5 RACES);
RACET1, ..., variables for DM and | SUPPDM
RACES SUPPDM
--SEQ get_seq Derive --SEQ AE, CE, CM, | %get_seq(_DOMAIN=LB,_SORTKEYS=STUDYID USUBJID LBCAT LBTESTCD
variables based on DS, EG, EX, | VISITNUM LBDTC);
provided key FA, HO, IE,
variables LB, MH, PC,
PR, QS, SS,
VS
--DY get_dy Derive --DY variables | AE, CE, CM, | %get_dy(_DATEVAR=LBDTC,_DAYVAR=LBDY);
based on provided -- | DS, EG, EX,
DTC variables FA, HO, IE,
LB, MH, PC,
PR, QS, SS,
VS
--LOBXFL get_lobxfl Derive the Last EG, FA, LB, | %get_lobxfl_ DATEVAR=LBDTC,_DAYVAR=LBDY,_DOMAIN=LB,
Observation Before PC, QS,VS | _LASTVAR=LBTESTCD, RESVAR=LBSTRESN,
Exposure Flag _SORTVARS=USUBJID LBCAT LBTESTCD LBDTC);
--BLFL get_bilfl Derive the Baseline EG, FA, LB, | %get_blfl_ DATEVAR=LBDTC,_DAYVAR=LBDY,_DOMAIN=LB,
Flag PC, QS,VS | _LASTVAR=LBTESTCD, RESVAR=LBSTRESN,
SORTVARS=USUBJID LBCAT LBTESTCD LBDTC);
RFSTDTC get_rfstdtc Derive RFSTDTC DM %get_rfstdtc(_ DATA=EX1 EX2 EX3,_DATEVAR=EX1STDAT EX2STDAT EX3STDAT,
_SUBJVAR=SUBJECT, TIMEVAR=EX1STTIM EX2STTIM EX3STTIM);
RFENDTC get_rfendtc Derive RFENDTC DM %get_rfendtc(_ DATA=EX1 EX2 EX3,_DATEVAR=EX1ENDAT EX2ENDAT EX3ENDAT,
_SUBJVAR=SUBJECT, TIMEVAR=EX1ENTIM EX2ENTIM EX3ENTIM);
RFEXSTDTC | get_rfxstdtc Derive RFEXSTDTC DM %get_rfxstdtc(_ ASSIGN=RFSTDTC, DATA=, DATEVAR=, SUBJVAR=, TIMEVAR=);
RFXENDTC | get_rfxendtc Derive RFXENDTC DM %get_rfxendtc(ASSIGN=RFENDTC, DATA=, DATEVAR=, SUBJVAR=, TIMEVAR=);
RFPENDTC | get rfpendtc Derive RFPENDTC DM %get_rfpendtc(CUTOFFDT=&cutoffdt., DATEVAR=EOSDAT);
TRT get_trt Derive ARM-related DM %get_trt(_ DRGCRIT=not missing(EX3STDAT),_DRGDATA=EX3,
variables in DM _SFCRIT=ENRSF_STD='N',_SFDATA=EN,_SUBJVAR=SUBJECT);
AETRTEM get_aetrtem Derive the TEAE SUPPAE %get_aetrtem();
Flag to be included in
SUPPAE
IEDTC get_dtc_dov Derive --DTC using IE %get_dtc_dov(_DATEVAR=IEDTC,_DOVDATA=SV,_DOVDATE=VISDAT,

date of visit from raw
data when a specific
form is missing a
date field

_SORTVARS=SUBJECT FOLDER);

23

