
1

PharmaSUG 2024 - Paper MM-267

A Practical Approach to Automating SDTM Using a Metadata-Driven
Method That Leverages CRF Specifications and SDTM Standards

Xiangchen (Bob) Cui, Min Chen, and Jessie Wang, CRISPR Therapeutics AG, Boston, MA

ABSTRACT

Automated SDTM generation has several benefits, including efficiency, accuracy, compliance with
regulatory requirements, and the speeding up of the data analysis process. However, due to the
dissimilarity and varying complexity of different CRFs, SDTM domains, and eSource systems among
different studies, development of a tool to automate SDTM has been a challenging task for sponsors,
CROs, and EDC service providers.

We propose a new approach in automatic generation of SAS® code for SDTM. A SAS-based macro is
developed based on CRF specifications from an EDC database and SDTM standards. Our approach is
user-friendly with high transparency, easily scalable to multiple studies, and especially useful for relatively
smaller sponsors and CROs, for there is no requirement to standardize CRFs and raw dataset variables’
attributes (which is the best practice but can be too work-intensive) and no required expertise in other
computer languages.

INTRODUCTION

SDTM automation streamlines the process of transforming raw clinical trial data into the standardized
SDTM format. This process involves CRF annotations, SDTM specification writing, development of SAS
code to generate SDTM data, validation, SDRG writing, and define.xml generation. SDRG and define.xml
support regulatory submissions along with annotated CRFs and SDTM datasets in v5 Transport Format
(XPORT) [1]. Automation offers several benefits, including efficiency, accuracy, compliance with
regulatory requirements, and the speeding up of the data analysis process. However, it is not an easy
task to achieve due to the complexity of different CRFs and eSource systems.

Sponsors, CROs, and EDC service providers can have many different approaches to automating SDTM,
and the degree of automation can differ based on the initial data conditions and complexity. [2] details
how Eli Lilly has been pursuing SDTM automation. It uses a car analogy to describe the concept: four
wheels and an engine to drive. It states “the four wheels are: a robust set of standards, a metadata
repository to store and maintain those standards, a set of generic macros for data set creation, and a
programming process to utilize those macros. The engine is metadata. By defining a metadata model that
not only defines the source and target but also the logic to convert the source to the target, we can build
out the rest of the components to make this vision a reality. A proof-of-concept project based on this idea
achieved 96% automation of SDTM variables in a test study” [2].

Automation is a hybrid process comprising of applications or tools plus manual parts involving CRF
annotations and SDTM specification writing. Standardization of raw data collection can dramatically
reduce the time spent on these manual parts. However, the resources needed for standardization are not
always feasible for smaller sponsors or CROs.

This paper introduces a new approach in the automatic generation of SAS code for SDTM automation
that strikes a balance between high-level automation and resource investment. A SAS-based macro
named %SDTM_Code_Generator was developed based on CRF specifications from an EDC database
and SDTM programming standards [3,4]. We provide details on the rationale and logic flow for this macro,
its inputs and outputs, how to build a master-annotation spreadsheet to support SDTM automation, how
to efficiently scale it up for new studies, how to handle external data, how to effectively validate its output
datasets, and how to deal with EDC database changes.

Based on our working experience from applying this new approach to two different types of oncology
studies, this paper is titled “A Practical Approach to Automating SDTM” for the following reasons:

1. High-quality delivery of SDTM datasets and operational efficiency through high-level automation

2

2. Flexibility for users to control the degree of automation and account for cost/timelines

3. Faster and solid validation due to not requiring double programming for all domains and a
guarantee that all raw dataset variables are accounted for in SDTM programming

4. Scalability to multiple studies by leveraging existing CRF specifications, master-annotation
spreadsheets, and macros

5. Transparency and user-friendliness as users can easily and directly review the inputs and outputs
of the process so that they have very high confidence in the delivery of SDTM datasets

6. No requirement of huge efforts to standardize CRFs or raw dataset variable attributes

7. No requirement of expertise in other computer languages, such as Structured Query Language
(SQL) for script creation

INTRODUCTION TO OUR SDTM PROGRAMMING PROCESS

In the past, we’ve written about our established SDTM programming process. [3] introduces our standard
SDTM specification, which follows CDISC’s standard. [4] presents a systematic approach to automating
the SDTM programming process to ensure compliance with FDA Business Rules [5] and CDISC SDTMIG
[6] for FDA submission. It details our SDTM programming standards consisting of the SDTM
Programming Convention (SDTMPC) and the SDTM Programming Library (SDTMPL). The utilization of
template SAS Programs for SDTM Mapping has been our standard practice, and they have been
successfully applied to multiple clinical studies, including several FDA submissions and their approvals.
Readers can refer to [4] for more information. The present goal is to replace our standard SDTM mapping
templates with a macro for SDTM automation.

STANDARD SDTM PROGRAMMING WORKFLOW

Figure 1 below depicts the standard SDTM programming workflow. SDTM programmers start to develop
SAS programs for the SDTM dataset generation only after CRF annotations and SDTM specifications are
available. A SDTM programmer manually annotates each CRF either to set up the one-to-one mapping
from each raw dataset variable specified in the CRF to its mapped SDTM domain variable or
supplemental qualifier or to label it as “NOT SUBMITTED”. The annotated case report form (aCRF) then
guides the programmers to develop SAS programs for SDTM dataset generation. One also manually
completes each SDTM domain specification to document and select the required SDTM variables and/or
supplemental qualifiers in the final SDTM dataset.

The development of each SDTM mapping SAS program is both critical and integral to SDTM
programming. However, it is time-consuming even with tools such as template SAS Programs for SDTM
mapping or CRF annotation tools, which guide the programmers in annotating each CRF based on the
applicable standards [7]. The amount of manual work required is high as well.

Figure 1. Standard SDTM Programming Workflow

INTRODUCTION TO OUR NEW SDTM PROGRAMMING WORKFLOW
Figure 2 below shows our new SDTM programming workflow. In contrast to the standard workflow
depicted in Figure 1, a master-annotation spreadsheet is created from CRF annotations and CRF
specifications. The master-annotation spreadsheet contains metadata and variable attributes for the raw

Development of

Independent SAS

Programs for Validation

Generation of

SDTM Production

Datasets

CRF

Annotations Development of

SAS Programs for

Production SDTM

Specifications

Finalization

of SDTM

Datasets

Double Efforts

3

datasets combined with annotations mapping raw dataset variables to specific SDTM domain variables.
SDTM specifications contain information on SDTM standards along with variable inclusion/exclusion and
derivation. The master-annotation and SDTM specifications are the inputs of our new macro,
%SDTM_Code_Generator, which automatically generates SDTM mapping SAS programs. In contrast to
the traditional double programming validation shown in Figure 1, our new programming validation process
consists of the following three steps: code reviewing, real data testing, and developing an independent
mapping SAS program to validate a SDTM dataset for some complicated domains as needed per the
team’s decision.

Figure 2. New SDTM Programming Workflow

RATIONALE FOR THE DEVELOPMENT OF A MACRO FOR SDTM AUTOMATION

Aside from trial design domains, there are typically over twenty SAS programs needed to read and map
the data collected from CRFs for each study. From a quality assurance (QA) perspective, independently
developed SAS programs for validation are designed to ensure the highest quality. However, that doubles
the development work required. Some domains, such as LB or PR, may have hundreds of data blocks
due to the numerous tests or procedures collected on CRF forms. The manual effort needed to ensure
that all of these are correctly included in both production and validation programs is time-intensive and
still prone to error.

Table 1 shows the advantages and benefits of a macro for SDTM automation over the SDTM mapping
template SAS programs. A huge amount of work is needed to update template SAS programs for EDC
database changes or new studies while a macro can automatically adapt to some of those changes and
save development time.

Types of
Changes

Specific Changes SDTM Mapping Template SAS
Programs

A Macro

eSource
systems or
EDC database
changes

Raw dataset names, variable
attributes, CRF annotations

Must make the corresponding
updates/changes across over forty SAS
programs from both production and
validation by typing and/or copying, which
is time-consuming and error-prone

No changes or minimal
changes

New studies New CRFs, domains, more
changes, annotations, and
specifications

Make the corresponding updates/changes
to SAS programs

May need to update the macro
correspondingly and update its
input files if necessary

Table 1. Advantages of a Macro for SDTM Automation Over SDTM Mapping Template SAS
Programs

INTRODUCTION TO THE MACRO’S SINGLE PARAMETER AND ITS OUTPUT FOR
SDTM AUTOMATION

Table 2 below shows the macro’s single parameter, its calls, and the outputs of the calls. Its single
parameter is either a specific SDTM domain name or “ALL”, and its call generates a SAS program for the
specified domain or SAS programs for all domains, respectively. It requires that all CRF annotations
(SDTM mapping), all raw dataset names, and their attributes (variable names, labels, and types) are
stored in a single spreadsheet named as master-annotation.xlsx. Further details for the master-
annotation spreadsheet are included in a later section.

Of note, the subject visits (SV) domain is a special purpose domain that requires more complex
derivations, many of which are different from ones of the original %SDTM_Code_Generator macro. To
simplify the development of the macro and reduce the length of SAS code needed, we developed an

SDTM

Specifications

Master-

Annotation

Spreadsheet CRF Specifications

with Raw Dataset

Variable Attributes

CRF Annotations

%SDTM_Code_Generator
Generating SAS Programs

for SDTM Dataset

Generation

Validation Process:

1. Code Reviewing

2. Real Data Testing

3. Independent SAS

Programs As Needed

Finalization

of SDTM

Datasets

4

additional macro named %SV_Code_Generator, which leverages the output from the call of
%SDTM_Code_Generator and extends it further. Please refer to [8] for more information.

Macro Call Output of the Macro Call

%SDTM_Code_Generator(domain_=Domain Name)
For example, % SDTM_Code_Generator(domain_=DM);

A SAS program with the domain name (e.g., DM.sas)

%SDTM_Code_Generator(domain_=ALL) All SAS programs for the domains specified in master-
annotation.xls

Table 2. %SDTM_Code_Generator Macro Calls and Outputs

HOW %SDTM_CODE_GENERATOR CREATES A SAS PROGRAM

Our macro generates SAS mapping code from its input files and writes that mapping code into a SAS
dataset. Display 1 below is an example of that SAS dataset with 2 columns: lines and _order. Using the
code in Display 2 from %SDTM_Code_Generator, we can output the contents of our final dataset into a
SAS program file, CM.sas (Display 3). The lines of code contained in this output CM.sas file (Display 3)
are identical to the contents of Display 1’s lines column.

Display 1. A SAS Dataset with Columns lines and _order Containing a Snippet of Code for SDTM
CM.sas

Display 2. SAS Data _NULL_ Step to Output a SAS Program

5

Display 3. A Snippet of the Output SAS Program for SDTM CM.sas

%SDTM_Code_Generator is designed to generate a SAS dataset first for each SDTM domain. Then, it
uses the SAS code from Display 2 to output a SAS program for each SDTM domain.

INTRODUCTION TO THE LOGIC FLOW OF %SDTM_CODE_GENERATOR

Figure 3 below shows the logic flow of %SDTM_Code_Generator alongside a typical SDTM
programming logic flow with arrows connecting corresponding blocks. The former outputs a SDTM SAS
program while the latter outputs a SDTM dataset.

Figure 3. The Logic Flow from %SDTM_Code_Generator vs. Typical SDTM Programming

Before developing SAS code for each SDTM domain, %SDTM_Code_Generator first reads in and
subsets the master-annotation spreadsheet for the dedicated SDTM domain. Secondly, it reads the

A Typical SDTM Programming Logic

Flow to Generate a SDTM Dataset

Logic Flow of %SDTM_Code_Generator

to Generate a SDTM SAS Program

Macro Calls to Derive Standard SDTM

Variables

Output Main Domain

SAS Code for Supplemental Domain

Read in Master-Annotation Spreadsheet

for CRF Annotated Variables + SDTM

Specifications for Assigned Variables

Read in SDTM Specifications for Macro

Calls for Derived SDTM Variables

Output Supplemental Domain

Read in Master-Annotation Spreadsheet

for Supplemental Domains

Simple Data Manipulation

Simple Data Manipulation

Data Step

to Map Raw Dataset Variables

to SDTM Variables

6

Origin and our newly added Derivation/Assigned columns from SDTM specifications, which contain
information on whether variables are directly mapped, assigned, or derived. Table 3 below shows the
source of inputs for the macro’s automation. When Origin is “CRF Page”, the macro directly maps those
variables from the master-annotation spreadsheet. When Origin is “Protocol”, “Assigned”, or “Derived”,
the Derivation/Assigned column in SDTM specifications can be utilized to further customize SAS macro
code.

Origin of
SDTM
Variables

Input of a SAS-Based
Macro

Source Case

CRF Master-Annotation
Spreadsheet

Combination of CRF Specifications and
CRF Annotations

All mapping variables

Protocol SDTM Specifications Derivation/Assigned column Assignment, e.g., STUDYID=’Study-101’

Assigned SDTM Specifications Derivation/Assigned column Assignment, e.g., DOMAIN = 'CM' or DM.ARMCD from
the call of %get_trt

Derived SDTM Specifications Derivation/Assigned column A line of code or macro call(s)

Table 3. Sources of Inputs for %SDTM_Code_Generator

INTRODUCTION TO OUR STANDARD SDTM SPECIFICATIONS

Our standard SDTM specification [3] is based on CDISC’s standard. See Table 4 below for an example of
our DM domain specification with a sample of variables. The Variable, Label, Type, Controlled
Terminology, and Core columns come directly from the SDTMIG v3.4. Per the SDTMIG [6], the sources of
SDTM variables are categorized by the origin of the data source in the Define-XML document file, such
as “CRF”, “Protocol”, “Assigned”, or “Derived”.

To support our SDTM automation, we’ve enhanced each SDTM specification with a new column,
Derivation/Assigned, to store either a simple line of SAS assignment code or a SAS macro name. This
allows us to further customize code for the variables without needing to add extra code to
%SDTM_Code_Generator.

When Origin is “CRF Page xx”, most SDTM variables (e.g., RFICDTC) can be directly mapped from raw
dataset variables. When Origin is “Protocol”, “Assigned”, or “Derived”, the Derivation/Assigned column
can be utilized to further customize SAS macro code. In the case when one line of code is sufficient (e.g.,
STUDYID, USUBJID, etc.), we write the code directly in the Derivation/Assigned column, and the macro
reads that in.

However, some other standard SDTM variables require more lines of code. They may need additional
lines of code and/or data steps to derive from other variables either within the same raw dataset or across
multiple raw datasets. Examples of these are --DTC, --STDTC, --ENDTC, --DY, --STDY, --ENDY, --BLFL,
--LOBXFL, --SEQ, RFSTDTC, RFENDTC, RFXSTDTC, RFXENDTC, RFPENDTC, ARMCD, ARM, etc.
For coding efficiency, the derivation of these variables is generalized and grouped into a utility macro, and
the name of that specific utility macro is included in the SDTM specifications (e.g., %get_trt).

While the SDTM variables that require utility macros usually have Origin as “Protocol”, “Assigned”, or
“Derived”, there is one exception: the variable RACE. Since multiple races are collected in a study and
the multiple race-related SDTM guidelines [6] should be followed, we had to develop a %map_race utility
macro, and that utility macro name is written in the Derivation/Assigned column in SDTM specifications
for automation as shown in Table 4.

Variable Label Type Length Controlled
Terminology

Origin Core Derivation/Assigned

STUDYID Study Identifier Char 20

Protocol Req STUDYID='Study-101';

DOMAIN Domain Abbreviation Char 2 DOMAIN Assigned Req DOMAIN='DM';

USUBJID Unique Subject Identifier Char 40

Derived Req USUBJID=strip(STUDYID)||
strip(substr(SUBJECT,4));

SUBJID Subject Identifier for the Study Char 20

CRF Page 267 Req SUBJID=strip(substr(SUBJECT,5));

RFSTDTC Subject Reference Start Date/Time Char 20 ISO 8601 Derived Exp %get_rfstdtc

RFENDTC Subject Reference End Date/Time Char 20 ISO 8601 Derived Exp %get_rfendtc

RFXSTDTC Date/Time of First Study Treatment Char 20 ISO 8601 Derived Exp %get_rfxstdtc

RFXENDTC Date/Time of Last Study Treatment Char 20 ISO 8601 Derived Exp %get_rfxendtc

RFICDTC Date/Time of Informed Consent Char 20 ISO 8601 CRF Page 5 Exp

RFPENDTC Date/Time of End of Participation Char 20 ISO 8601 Derived Exp %get_rfpendtc

RACE Race Char 50 RACE CRF Page 7 Exp %map_race

ETHNIC Ethnicity Char 40 ETHNIC CRF Page 7 Perm

ARMCD Planned Arm Code Char 20 Assigned Exp %get_trt

7

Variable Label Type Length Controlled
Terminology

Origin Core Derivation/Assigned

ARM Description of Planned Arm Char 200 Assigned Exp %get_trt

ACTARMCD Actual Arm Code Char 20 Assigned Exp %get_trt

ACTARM Description of Actual Arm Char 200 Assigned Exp %get_trt

ARMNRS Reason Arm and/or Actual Arm is Null Char 80 Assigned Exp %get_trt

ACTARMUD Description of Unplanned Actual Arm Char 200

Assigned Exp %get_trt

Table 4. DM Domain Specification With a Sample of Variables

INTRODUCTION TO OUR SAS UTILITY MACROS

Table 5 lists five of our SAS utility macros dedicated to SDTM variables: --DTC, RACE, RACE1, …,
RACE5, --SEQ, and --DY. Please refer to Appendix 1 for a more comprehensive list of our utility macros.
A centralized SAS dataset named macrocalls stores all macro calls located in the macro library, except
for %map_dtc_date and %map_dtc_time, which are directly called by %SDTM_Code_Generator. Table
6 shows examples of the records in the macrocalls dataset for domains AE, DM, and LB.

SDTM
Variable

Macro Name Description SDTM Domains Example Macro Call

--DTC

map_dtc_date
and
map_dtc_time

Derive –DTC
variables when there
are partial dates

All Domains
except for DM
and SV

%map_dtc_date(_DATEVAR=AESTDTC,
_RAWDATE=AESTDAT);
%map_dtc_time(_DATEVAR=AESTDTC,
_RAWTIME=AESTTIM);

RACE,
RACE1, …,
RACE5

map_race Derive RACE
variables for DM and
SUPPDM

DM, SUPPDM %map_race(_NUMFL=Y,_VAR=RACE1 RACE2
RACE3 RACE4 RACE5 RACE6);

--SEQ get_seq Derive --SEQ
variables based on
provided key
variables

All Domains
except for DM
and SV

%get_seq(_DOMAIN=LB,
_SORTKEYS=STUDYID USUBJID LBCAT
LBTESTCD VISITNUM LBDTC);

--DY get_dy Derive --DY variables
based on provided --
DTC variables

All Domains %get_dy(_DATEVAR=LBDTC,
_DAYVAR=LBDY);

Table 5. Examples of SAS Utility Macros for SDTM Automation

MACRO MORD DOMAIN VARIABLE MCALL

%get_seq 100 AE AESEQ %get_seq(_DOMAIN=AE,_SORTKEYS=STUDYID USUBJID
AESTDTC AEDECOD AESPID);

%get_dy 102 AE AEENDY %get_dy(_DATEVAR=AEENDTC,_DAYVAR=AEENDY);

%get_dy 102 AE AESTDY %get_dy(_DATEVAR=AESTDTC,_DAYVAR=AESTDY);

%get_aetrtem 111 AE AETRTEM %get_aetrtem();

%map_race 2 DM RACE %map_race(_NUMFL=Y,_VAR=RACE1 RACE2 RACE3 RACE4
RACE5 RACE6);

%get_rfstdtc 105 DM RFSTDTC %get_rfstdtc(_DATA=EX1 EX2 EX3,_DATEVAR=EX1STDAT
EX2STDAT EX3STDAT,_SUBJVAR=SUBJECT,
_TIMEVAR=EX1STTIM EX2STTIM EX3STTIM);

%get_rfendtc 106 DM RFENDTC %get_rfendtc(_DATA=EX1 EX2 EX3,_DATEVAR=EX1ENDAT
EX2ENDAT EX3ENDAT,_SUBJVAR=SUBJECT,
_TIMEVAR=EX1ENTIM EX2ENTIM EX3ENTIM);

%get_rfxstdtc 107 DM RFXSTDTC %get_rfxstdtc(_ASSIGN=RFSTDTC,_DATA=,_DATEVAR=,
_SUBJVAR=,_TIMEVAR=);

%get_rfxendtc 108 DM RFXENDTC %get_rfxendtc(_ASSIGN=RFENDTC,_DATA=,_DATEVAR=,
_SUBJVAR=,_TIMEVAR=);

%get_rfpendtc 109 DM RFPENDTC %get_rfpendtc(_CUTOFFDT=&cutoffdt.,_DATEVAR=EOSDAT);

%get_trt 110 DM ARMCD %get_trt(_DRGCRIT=not missing(EX3STDAT),_DRGDATA=EX3,
_SFCRIT=ENRSF_STD='N',_SFDATA=EN,_SUBJVAR=SUBJECT);

%get_seq 100 LB LBSEQ %get_seq(_DOMAIN=LB,_SORTKEYS=STUDYID USUBJID LBCAT
LBTESTCD VISITNUM LBDTC);

%get_dy 102 LB LBDY %get_dy(_DATEVAR=LBDTC,_DAYVAR=LBDY);

%get_lobxfl 103 LB LBLOBXFL %get_lobxfl(_DATEVAR=LBDTC,_DAYVAR=LBDY,_DOMAIN=LB,
_LASTVAR=LBTESTCD,_RESVAR=LBSTRESC,
_SORTVARS=USUBJID LBCAT LBTESTCD LBDTC);

%get_blfl 104 LB LBBLFL %get_blfl(_DATEVAR=LBDTC,_DAYVAR=LBDY,_DOMAIN=LB,
_LASTVAR=LBTESTCD,_RESVAR=LBSTRESC,
_SORTVARS=USUBJID LBCAT LBTESTCD LBDTC);

Table 6. Examples of Records From SAS Dataset Macrocalls for SDTM Domains: AE, DM, and LB

8

%SDTM_Code_Generator merges the macrocalls data with the Derived/Assigned column in SDTM
specifications by domain, variable name, and macro name. Then it generates the macro calls for each
domain’s SDTM mapping program using the MCALL variable. Display 4 shows the generated macro calls
for DM.sas along with the programming comments.

Display 4. SAS Code Generated by %SDTM_Code_Generator for the Macro Calls of the DM
Domain

INTRODUCTION TO MEDIDATA’S ARCHITECT LOADER SPECIFICATION (ALS)

Medidata’s Rave EDC (Electronic Data Capture) is widely used to build the EDC database for a clinical
study. The Architect Loader Specification (ALS) is the document that Rave uses with metadata systems,
and it provides information about how the database has been set up. One can duplicate the structure in
another study database simply by customizing a pre-existing ALS and then importing the modified ALS
into the new study database. Rave users can export an ALS directly from the Rave database. Table 7
shows an example of the Forms sheet from a study’s ALS. The OID column shows the form names (EDC
dataset names), and the DraftFormName column shows the label of each form.

OID Ordinal DraftFormName

SUBJ 1 Subject Registration

SV 2 Subject Visit

IC 3 Informed Consent

DM 4 Demographics

IE 5 Inclusion and Exclusion

EN 6 Enrollment

DIA 7 Diagnosis

MH 8 Medical History

RADPRE 9 Prior Radiation Therapy

THERPRE 10 Prior Anti-Cancer Therapy

MR 14 Modified Rai Clinical Stage

VS 18 Vital Signs

EG 22 12- Lead ECG - Single Timepoint

PK 25 Study Product PK

BIONON 31 Exploratory Biomarkers

LBCHEM 35 Local Lab - Chemistry

UV 491 Unscheduled Subject Visit

EOS 494 End of Study

Table 7. An Example of the Forms Sheet From an ALS

Table 8 below shows an example of the Fields sheet from a study’s ALS. The FieldOID column shows the
variable names for the EOS form, along with their formats (DataFormat) and labels (SASLabel). Of note,
the last column VARIABLE TYPE is added by the user and derived from column DataFormat. It is directly
used for the derivation inside %SDTM_Code_Generator.

FormOID Ordinal FieldOID SASLabel / VARIABLE LABEL DataFormat VARIABLE TYPE

EOS 1 EOSDAT End of Study Date dd MMM yyyy Date

EOS 2 EOSSTAT Subject Disposition at the End of Study $15 char

EOS 3 EOSREAS Reason for End of Study $40 char

EOS 4 EOSOTSP_O Other, Specify $200 char

EOS 5 EOSDEADT Death Date dd MMM yyyy Date

EOS 6 PRCDTH Primary Cause of Death $20 char

EOS 7 EOSAESP_O Adverse Event, Specify $200 char

EOS 8 EOSNSRSP_O Not Study Related, Specify $200 char

EOS 9 EOSOTSPY_O Other, Specify $200 char

Table 8. An Example of the Fields Sheet for the EOS Form From an ALS

9

An ALS is the repository for all raw dataset names and variable attributes for a study, which are some of
the inputs for SDTM programming. SDTM programmers manually annotate CRFs at the beginning of
SDTM programming. The aCRF then guides programmers to develop SAS programs for SDTM datasets.
Moreover, it is one of the required documents for regulatory submission. Each annotation sets up the
one-to-one mapping from each raw dataset variable in a CRF to its mapped SDTM domain variable or
supplemental qualifier in each SDTM mapping program. If this could be directly used as the
logic/mapping rules by a SAS macro, it would be more beneficial to the programming, and automation
could be achieved. Hence, we store these annotations along with the metadata for raw datasets as
described above in a single spreadsheet called “master-annotation”, which is “semi-automatically”
developed per the availability of a study’s ALS. This allows a SAS macro to simultaneously import all the
mapping rules for all domains and utilize them in the SDTM automation macro, instead of having multiple
programmers individually annotate and develop programs for different SDTM domains.

INTRODUCTION TO OUR MASTER-ANNOTATION SPREADSHEET

As described above, we developed a spreadsheet file named master-annotation.xlsx as the repository
of all raw dataset names and variable attributes (variable name, label, and type) as specified in the ALS
along with CRF annotations mapping raw dataset variables to SDTM domains and their variables.
Furthermore, extra columns are added to the file to aid the macro in automating SAS code generation.

We start with variables (EDC DATASET NAME – VARIABLE LABEL) derived directly from the ALS as the
foundation for the master-annotation as the ALS includes raw dataset names, variable names, labels,
types, formats, and orders. Additional columns (SDTM DOMAIN – DECOD/TRT) are added in the master-
annotation to facilitate mapping those raw dataset variables to the corresponding SDTM domains. These
columns generally come from CRF Annotations. Extra columns (QLABEL – TRT ASSIGN) are designed
to assist the automation for certain SDTM variables. Please see Table 9 below for an example of how the
RADPOST (Post-Treatment Radiation Therapy) form is annotated in the master-annotation and Table 10
for a summary of these key columns (variables) in the master-annotation.

EDC
DATASET
NAME

EDC DATASET
LABEL

ORD.
VARIABLE
TYPE

VARIABLE NAME VARIABLE LABEL
SDTM
DOMAIN

SDTM VARIABLE CATEGORY
SUB
CATE
GORY

DECOD/TRT

RADPOST
Post-Treatment
Radiation Therapy

1 char RADPOSTYN_STD
Post-Treatment
Radiation Therapy?

PR [NOT SUBMITTED]
CONCURRENT
RADIOTHERAPY

 RADIOTHERAPY

RADPOST
Post-Treatment
Radiation Therapy

2 Date RADPOSTSTDAT Date of First Dose PR PRSTDTC

RADPOST
Post-Treatment
Radiation Therapy

3 Date RADPOSTENDAT Date of Last Dose PR PRENDTC

RADPOST
Post-Treatment
Radiation Therapy

4 Numeric RADPOSTTD Total Dose PR PRDOSE

RADPOST
Post-Treatment
Radiation Therapy

5 char RADPOSTTDU_STD Total Dose Unit PR PRDOSU

RADPOST
Post-Treatment
Radiation Therapy

6 char RADPOST_O Other, Specify PR
DOSSPEC in
SUPPPR

RADPOST
Post-Treatment
Radiation Therapy

7 char RADPOSTSR_STD Site of Radiation PR PRLOC

RADPOST
Post-Treatment
Radiation Therapy

8 char RADPOSTS_O Other, Specify PR
LOCSPEC in
SUPPPR

RADPOST
Post-Treatment
Radiation Therapy

9 char RADPOSTPU_STD Purpose PR
PURPOSE in
SUPPPR

EDC DATASET NAME ORDER QLABEL QORIG QEVAL GRPID TRT ASSIGN

RADPOST 1

RADPOST 2

RADPOST 3

RADPOST 4

RADPOST 5

RADPOST 6 Total Dose, Other, Specify CRF

RADPOST 7

RADPOST 8 Site of Radiation, Other, Specify CRF

RADPOST 9 Purpose CRF

Table 9. An Example of the Master-Annotation for the PR Domain (With Raw Dataset: RADPOST)

From ALS From CRF Annotation

Assisting the Macro to Automate the SAS Code Generation

10

Column Column Content Origin Manual?

EDC DATASET NAME Raw dataset name ALS

EDC DATASET LABEL Raw dataset label ALS

ORDER The order of variables specified in CRFs, one of the key variables used to sort
intermediate datasets generated by %SDTM_Code_Generator

ALS

VARIABLE TYPE Variable type in raw dataset: Numeric, char, Date, Time, or Date & Time ALS Derived

VARIABLE NAME Variable name in raw dataset ALS

VARIABLE LABEL Variable label in raw dataset ALS

SDTM VARIABLE SDTM variable name, SDTM variable name for a specific test, QNAM in supplemental
domain, or not submitted

CRF Annotation Y

CATEGORY Text to assign –CAT. Applicable to domains: DS, EG, FA, LB, QS, TR, VS CRF Annotation Y

SUB CATEGORY Text to assign --SCAT/FAOBJ. Applicable to domains: DS, EG, FA, LB, QS, TR CRF Annotation Y

DECOD/TRT Text to assign --TRT/--TEST/DSTERM/DSDECOD. Applicable to domains: DS, FA,
PR, TR

CRF Annotation Y

QLABEL Assign QLABEL in supplemental domains Triplet to help map
raw dataset

variables in
supplemental
domains

User input
(intended to

assist
%SDTM_Code_
Generator with
SAS code
generation)

Y

QORIG Assign QORIG in supplemental domains, with values: CRF,

Derived, or Assigned.

QEVAL Assign QEVAL in supplemental domains, e.g., “CLINICAL
STUDY SPONSOR”

GRPID Column to define the group (block) within a raw dataset indicating that variables in the
same group will be mapped to a specific intervention, occurrence, event,
measurement, or finding. Applicable to domains: DS, FA, PR, QS, TR, TU

TRT ASSIGN Column to aid automation and indicate extra coding is needed for the mapping of the
variables. Applicable to all finding domains along with DS, FA, PR, and SV

Table 10. Summary of the Key Variables in the Master-Annotation

The macro uses the variables above as its inputs to derive SDTM SAS programs. Table 11 shows an
example of SDTM date variables --DTC, --STDTC, or –ENDTC along with raw dataset variables used to
derive them.

EDC
DATASET
NAME

EDC DATASET LABEL ORDER VAR. TYPE VARIABLE NAME VARIABLE LABEL SDTM
DOMAIN

SDTM
VARIABLE

AE Adverse Events 3 Date AESTDAT Start Date AE AESTDTC

AE Adverse Events 4 Time AESTTIM Start Time AE AESTDTC

AE Adverse Events 5 Date AEENDAT End Date AE AEENDTC

AE Adverse Events 6 Time AEENTIM End Time AE AEENDTC

EOS End of Study 1 Date EOSDAT End of Study Date DS DSSTDTC

EOS End of Study 5 Date EOSDEADT Death Date DM DTHDTC

EX1 Lymphodepleting Chemotherapy: Fludarabine 8 Date EX1STDAT What was the treatment start date? EX EXSTDTC

EX1 Lymphodepleting Chemotherapy: Fludarabine 10 Date EX1ENDAT What was the treatment stop date? EX EXENDTC

LBCHEM Local Lab - Chemistry 2 Date LBDAT Date of Collection LB LBDTC

VS Adverse Events 2 Date VSDAT Date of Collection VS VSDTC

Table 11. A Sample of Raw Dataset Date/Time Variables and Their Mapped SDTM Variable Names
From the Master-Annotation

Display 5 shows SAS code from %SDTM_Code_Generator that is used to generate the SAS code for
AE.AESTDTC and AE.AEENDTC in AE.sas. Of note, SDTM VARIABLE was renamed as variable for
convenience inside the macro as shown on lines 4 and 6. Display 6 shows the output SAS code
generated by Display 5 for AESTDTC and AEENDTC.

Display 5. SAS Code from %SDTM_Code_Generator Used to Generate SAS Code Inside AE.sas for
AESTDTC and AEENDTC

11

Display 6. SAS Code to Map Raw Dataset Variables to AESTDTC and AEENDTC Inside AE.sas

From the example above, the macro uses the columns from the master-annotation for derivation, instead
of needing to specify individual variable names from the raw datasets. This allows for the macro to be
used in multiple studies, even if their EDC databases are built from different vendors.

INTRODUCTION TO MASTER-ANNOTATION COLUMN TRT ASSIGN

Column TRT ASSIGN is used to indicate additional derivation rules for certain SDTM variables. It is
restricted to one of the following keywords: Blank, “Y”, “TEST”, “COMBINE”, or a subset condition for
different classes of the SDTM domains. When combined with the columns SDTM VARIABLE,
CATEGORY, SUB CATEGORY, and DECOD/TRT, it helps set up the logic for the derivation of SDTM
domain variables and supplemental qualifiers: --CAT, --SCAT, --TEST, --TESTCD, --ORRES, --ORRESU,
QNAM, QLABEL, QORIG, QVAL, etc. Table 12 shows examples of how TRT ASSIGN is combined with
these other columns and the logic for the mapping and derivations of the relevant SDTM variables.

Class of the
Domains
(Example)

TRT ASSIGN SDTM
VARIABLE

CATEGORY SUB
CATEGORY

DECOD/
TRT

Logic for Mapping and Derivation

1.1 ALL Domains Blank [NOT
SUBMITTED]

NA NA NA No mapping

1.2 ALL Domains Blank Variable in main
domain

NA NA NA Map VARIABLE NAME to Domain
Variable

1.3 Findings (EG,
VS, TR)

Blank --ORRESU when
--TESTCD = ZZZ

NA NA NA Map VARIABLE NAME to --ORRESU
where --TESTCD = ZZZ

1.4 ALL Domains Blank QNAM in
Supplemental
Domain

NA NA NA Map QNAM to SUPP--.QNAM,
Map QLABEL to SUPP--.QLABEL,
Map QORIG to SUPP--.QORIG,
Map VARIABLE NAME to SUPP--
.QVAL

2.1 Interventions
(PR)

Y [NOT
SUBMITTED]

PRCAT - PRTRT Map CATEGORY to PRCAT,
Map DECOD/TRT to PRTRT

2.2 Findings
About (FA)

Y [NOT
SUBMITTED]

FACAT FAOBJ - Map CATEGORY to FACAT,
Map SUB CATEGORY to FAOBJ

2.3 Findings (LB,
QS, RS, TR,
TU)

Y [NOT
SUBMITTED]

--CAT --SCAT - Map CATEGORY to --CAT,
Map SUB CATEGORY to --SCAT

3 Findings (EG,
LB, PE, VS,
QS, RS, TR,
TU), Findings
About (FA)

TEST --ORRES when --
TESTCD = ZZZ

 --TEST Map DECOD/TRT to --TEST,
Map ZZZ to --TESTCD,
Map VARIABLE NAME to --ORRES

4 Supplemental
(SUPPSV)

COMBINE QNAM in
Supplemental
Domain

NA NA NA Concatenate the values of raw dataset
variables by “,” before outputting them
into QVAL for QNAM = “UNSAPERF”.
Please refer to [8]

5 Supplemental
(SUPPPR)

A Subset
Condition

QNAM in
Supplemental
Domain

NA NAA NA Output the records into supplemental
domain ONLY when a subset
condition is satisfied

Table 12. Examples of How TRT ASSIGN is Combined With Other Columns to Derive Certain SDTM
Variables

There are five main scenarios according to the values of column TRT ASSIGN, and the following five
tables provide examples of these scenarios.

12

Scenario 1: Column TRT ASSIGN is Blank.

EDC
DATASET
NAME

EDC DATASET
LABEL

ORD. VAR.
TYPE

VARIABLE NAME VARIABLE LABEL SDTM
DOMAIN

SDTM VARIABLE QLABEL QORIG TRT
ASSIGN

AE Adverse Events 1 char AEYN_STD Any AE AE [NOT SUBMITTED]

AE Adverse Events 2 char AETERM AE Term AE AETERM

AE Adverse Events 12 char AESITYP_STD AESI Type AE AESITY in SUPPAE AESI Type CRF

VS Vital Signs 1 char VSPERF_VSALL_STD Vital Signs Collected VS [NOT SUBMITTED]

VS Vital Signs 2 Date VSDAT Date of Collection VS VSDTC

VS Vital Signs 12 char VSMETHOD_OXYSAT Oxygen Saturation
Method

VS OXYSAT in SUPPVS Oxygen Saturation
Method

CRF

VS Vital Signs 14 char VSORRES_OXYSATU Oxygen Saturation
Units

VS VSORRESU when
VSTESTCD = OXYSAT

Table 13. An Example of a Master-Annotation Where TRT ASSIGN is Set to Blank

Scenario 2: Column TRT ASSIGN = “Y”.

EDC
DATASET
NAME

EDC DATASET
LABEL

ORD. VAR.
TYPE

VARIABLE
NAME

VARIABLE LABEL SDTM
DOMAIN

SDTM
VARIABLE

CATEGORY SUB
CATEGORY

DECOD /TRT TRT
ASSIGN

CP Concomitant
Procedures and
Treatment

1 char CPYN_STD Surgical Therapeutic
Diag Procedure

PR [NOT
SUBMITTED]

CONCOMITANT
PROCEDURES AND
TREATMENT

 Y

RADPRE Prior Radiation
Therapy

1 char RADPREYN
_STD

Any Prior Radiation
Therapy Performed?

PR [NOT
SUBMITTED]

PRIOR
RADIOTHERAPY

 RADIOTHERAPY Y

ECHO Echocardiogra
m

1 char ECHOYN
_STD

Was ECHO
Performed?

FA [NOT
SUBMITTED]

ECHOCARDIOGRAM
STATUS

ECHOCARDIO
GRAM

 Y

LBCHEM Local Lab -
Chemistry

1 char LBPERF_STD Was sample
collected?

LB [NOT
SUBMITTED]

CHEMISTRY LOCAL
LABORATORY

 Y

LBHM Local Lab -
Hematology

1 char LBPERF_STD Was sample
collected?

LB [NOT
SUBMITTED]

HEMATOLOGY LOCAL
LABORATORY

 Y

Table 14. An Example of a Master-Annotation Where TRT ASSIGN is Set to “Y”

Scenario 3: Column TRT ASSIGN = “TEST”

EDC
DATASET
NAME

EDC DATASET
LABEL

ORDER VAR.
TYPE

VARIABLE
NAME

VARIABLE LABEL SDTM
DOMAIN

SDTM VARIABLE CATEGORY SUB
CATEGORY

DECOD /TRT TRT
ASSIGN

LBCHEM Local Lab -
Chemistry

3 Numeric GLUCOSE
_ORRES

Glucose LB LBORRES when
LBTESTCD = GLUC

 Glucose TEST

LBCHEM Local Lab -
Chemistry

6 Numeric BILITOT
_ORRES

Total Bilirubin LB LBORRES when
LBTESTCD = BILI

 Bilirubin TEST

ECHO Echocardiogra
m

3 char ECHOORRES Ejection Fraction FA FAORRES when
FATESTCD = LVEF

 Ejection
Fraction

TEST

LS Lugano Staging 4 char LSSTAGE _STD Lugano Staging at
Study Entry

FA FAORRES when
FATESTCD = STAGE

 Lugano Staging
at Study Entry

TEST

Table 15. An Example of a Master-Annotation Where TRT ASSIGN is Set to “TEST”

Scenario 4: Column TRT ASSIGN = “COMBINE”

This is a special case to handle the concatenation of raw dataset variables prior to inclusion in SUPPSV
with QNAM = “UNSAPERF” and QLABEL = “Unscheduled Assessments Performed”. Please refer to
APPENDIX 3 in [8] for the resulting SAS code.

EDC
DATASET
NAME

EDC DATASET
LABEL

ORD. VAR.
TYPE

VARIABLE
NAME

VARIABLE
LABEL

SDTM
DOMAIN

SDTM VARIABLE QLABEL QORIG TRT ASSIGN

UV Unscheduled
Subject Visit

15 Numeric EG ECG SV UNSAPERF in SUPPSV Unscheduled Assessments Performed CRF COMBINE

UV Unscheduled
Subject Visit

32 Numeric CHEM Local Lab
Chemistry

SV UNSAPERF in SUPPSV Unscheduled Assessments Performed CRF COMBINE

UV Unscheduled
Subject Visit

33 Numeric COAG Local Lab
Coagulation

SV UNSAPERF in SUPPSV Unscheduled Assessments Performed CRF COMBINE

UV Unscheduled
Subject Visit

35 Numeric HEM Local Lab
Hematology

SV UNSAPERF in SUPPSV Unscheduled Assessments Performed CRF COMBINE

UV Unscheduled
Subject Visit

37 Numeric PG Local Lab
Pregnancy Test

SV UNSAPERF in SUPPSV Unscheduled Assessments Performed CRF COMBINE

UV Unscheduled
Subject Visit

51 Numeric VS Vital Signs SV UNSAPERF in SUPPSV Unscheduled Assessments Performed CRF COMBINE

Table 16. An Example of a Master-Annotation Where TRT ASSIGN is Set to “COMBINE”

Scenario 5: Column TRT ASSIGN specifies a subset condition.

13

This is another special case to output raw dataset variables to supplemental datasets per a subset
condition. In the example below (Table 17), one CRF (Bone Marrow Aspirate/Biopsy – Lymphoma)
collects data for both PRTRT = “BONE MARROW ASPIRATION” and PRTRT = “BONE MARROW
BIOPSY” in the same record. PR.sas must separate them in SUPPPR for each category; otherwise, there
will be duplicate records. Therefore, a condition for the differentiation is added. Display 7 shows the SAS
code from PR.sas for generating different SUPPPR data blocks with QLABEL = “Morphology” by adding
the condition from the TRT ASSIGN column.

EDC
DATASET
NAME

EDC DATASET
LABEL

ORD. VAR.
TYPE

VARIABLE
NAME

VARIABLE
LABEL

SDTM
DOMAIN

SDTM VARIABLE QLABEL QORIG TRT ASSIGN

LBBMLYM Bone Marrow
Aspirate/Biopsy
- Lymphoma

4 char BMAORRES
_BMINTP_S
TD

Morphology PR BMINTP in SUPPPR Morphology CRF PRTRT='BONE MARROW ASPIRATION'

LBBMLYM Bone Marrow
Aspirate/Biopsy
- Lymphoma

5 char BMAORRES
_IHCRES_S
TD

IHC Result PR IHCRES in SUPPPR IHC Result CRF PRTRT='BONE MARROW ASPIRATION'

LBBMLYM Bone Marrow
Aspirate/Biopsy
- Lymphoma

7 char BMAORRES
_DISSTATE
_STD

Evidence Of
Disease

PR DISSTATE in
SUPPPR

Evidence of
Disease

CRF PRTRT='BONE MARROW ASPIRATION'

LBBMLYM Bone Marrow
Aspirate/Biopsy
- Lymphoma

11 char BMBORRES
_BMINTP_S
TD

Morphology PR BMINTP in SUPPPR Morphology CRF PRTRT='BONE MARROW BIOPSY'

LBBMLYM Bone Marrow
Aspirate/Biopsy
- Lymphoma

12 char BMBORRES
_IHCRES_S
TD

IHC Result PR IHCRES in SUPPPR IHC Result CRF PRTRT='BONE MARROW BIOPSY'

LBBMLYM Bone Marrow
Aspirate/Biopsy
- Lymphoma

14 char BMBORRES
_DISSTATE
_STD

Evidence Of
Disease

PR DISSTATE in
SUPPPR

Evidence of
Disease

CRF PRTRT='BONE MARROW BIOPSY'

Table 17. An Example of a Master-Annotation Where TRT ASSIGN Specifies a Subset Condition

Display 7. SAS Code From PR.sas for Generating Different SUPPPR Data Blocks With QLABEL =
“Morphology”

INTRODUCTION TO MASTER-ANNOTATION COLUMN GRPID

For findings domains, we often see cases where a raw dataset collects multiple types of findings
horizontally within the same record. However, for SDTM, that horizontal dataset is converted to a vertical
format with one type of finding per record. To account for these blocks of data, we added GRPID to the
master-annotation to indicate which variables need to be grouped together. %SDTM_Code_Generator
utilizes GRPID to output different blocks for different values of GRPID. Table 18 shows an example of a
master-annotation where GRPID aids SDTM automation. The same CRF SCTPOST (“Stem Cell
Transplant Post Treatment”) collects data from both “Autologous Stem Cell Transplant” and “Allogeneic
Stem Cell Transplant”. Display 8 shows SAS code from PR.sas that correctly maps the two different
transplant types into two separate blocks.

14

EDC
DATASET
NAME

EDC DATASET LABEL ORDER GRPID VARIABLE
TYPE

VARIABLE NAME VARIABLE LABEL SDTM
DOMAIN

SDTM VARIABLE

SCTPOST Stem Cell Transplant Post Treatment 1 1 Autologous Stem Cell Transplant PR

SCTPOST Stem Cell Transplant Post Treatment 2 1 char SCTAUTOYN_STD Autologous Stem Cell Transplant Post PR [NOT SUBMITTED]

SCTPOST Stem Cell Transplant Post Treatment 3 1 Date SCTAUTODAT Date of Autologous Stem Cell Transplant PR PRSTDTC

SCTPOST Stem Cell Transplant Post Treatment 4 1 char SCTAUTOREL_STD Progressed/Relapsed After the Transplant PR RELAPYN in SUPPPR

SCTPOST Stem Cell Transplant Post Treatment 5 1 Date SCTAUTORELDAT Date of Progression/Relapse PR RELAPDTC in SUPPPR

SCTPOST Stem Cell Transplant Post Treatment 6 2 Allogeneic Stem Cell Transplant PR

SCTPOST Stem Cell Transplant Post Treatment 7 2 char SCALLOTYN_STD Allogeneic Stem Cell Transplant After PR [NOT SUBMITTED]

SCTPOST Stem Cell Transplant Post Treatment 8 2 Date SCTALLODAT Date of Allogeneic Stem Cell Transplant PR PRSTDTC

SCTPOST Stem Cell Transplant Post Treatment 9 2 char SCTALLOPREL_STD Progressed/Relapsed After the Transplant PR RELAPYN in SUPPPR

SCTPOST Stem Cell Transplant Post Treatment 10 2 Date SCTALLORELDAT Date of Progression/Relapse PR RELAPDTC in SUPPPR

Table 18. An Example of a Master-Annotation Where GRPID Indicates the Variables That Need
Grouping

Display 8. SAS Code from PR.sas With Two Separate Blocks for Mapping Data From “Autologous
Stem Cell Transplant” and “Allogeneic Stem Cell Transplant”

RATIONALE FOR THE STRUCTURE OF THE MASTER-ANNOTATION
SPREADSHEET

From the examples above, it is easy to understand that the master-annotation provides the macro with
directions to directly map raw dataset variables to SDTM variables. The key variables/columns specified
in Table 10 are the “pillars” of the macro, and SDTM standards are the “rules/logic” to be followed. The
macro uses all of these to generate SAS code. The relevant rows of the master-annotation are processed
by the macro to generate the SAS code for each SDTM mapping SAS program. However, the “pillars”
and “rules/logic” are seldom changed (except for the up-versioning of the SDTMIG) while the rows of the
master-annotation change from study to study. Once the macro is very well developed, it can be adapted
for other studies with some new or updated directions while keeping most of the existing framework.

However, the master-annotation must be updated to account for new study CRFs. This update can lead
to macro modifications to incorporate new additional domains or new annotations due to CRF changes
intended to meet a new requirement, which can occur constantly in oncology studies. For example,
SDTM TR domain (Tumor/Lesion Results) is applied to both liquid tumor studies and solid tumor studies.
However, the lesion assessments for these two types of oncology studies have totally different data
collection, leading to different CRFs and annotations.

The vertical structure of raw dataset variable names and their attributes in a master-annotation provides
the macro with an advantage over SDTM mapping templates. The macro uses a single column
VARIABLE NAME to read each raw dataset variable name one by one to generate a SDTM SAS
program for a domain. When the raw dataset variable names change, there is very little impact on the
macro as the changes are automatically reflected in the master-annotation’s VARIABLE NAME column.
In contrast, raw dataset variable name changes have a negative impact on SDTM mapping templates as
the user needs to manually update variable names within a template program. This further shows a
benefit of this new approach.

Furthermore, all SDTM variables and their annotations are more accessible to users in the form of the
master-annotation spreadsheet compared to an annotated case report form (aCRF). Users can utilize

15

spreadsheet functionalities, such as sorting and filtering, to quickly locate specific variables and their
annotations. Users can easily review variables for a specific form or SDTM domain without needing to
scroll through or go back and forth between multiple pages of an aCRF. This master-annotation
spreadsheet is not only a wonderful tool for SDTM automation and programming but can also serve as a
great resource for ADaM programming.

BALANCING BETWEEN HIGH LEVEL AUTOMATION FROM A MACRO AND
COST/TIMELINES

Due to the dissimilarity and varying complexity of different CRFs from different studies, it is an
unreasonable expectation that the macro can achieve 100% automation for different studies, even if
these studies are from same compound within the same company.

The more standardized CRFs and raw dataset variable attributes become, the higher the level of
automation that can be achieved from the macro! While that standardization is the best practice, it
requires much more work to achieve. Even with a high degree of standardization, there are still minor
deviations in clinical trials.

The challenging question is what the expected level of automation is and what cost the organization is
willing to pay–the cost being the risk of missing timelines and the amount of resource investment. Striking
the right balance is vital to the team for short-term and long-term achievement. The more the macro
development aims to future-proof, the more time and resources it will take. If the development of the
macro were only dedicated to the current study, it would require fewer resources and could meet the
timelines. In our case, 100% automation is not expected, and the output SAS programs can still be
modified and updated by the users, especially for handling external datasets. This requires less effort to
develop the macro and makes it easier to meet the timelines, and the simplicity of the macro makes it
easily adaptable for new studies as well. This is our strategic approach with an adaptive mindset! This
approach is very feasible for relatively small sponsors and CROs, who have fewer resources and tight
timelines, for there is no requirement of huge efforts to standardize CRFs or raw dataset variable
attributes nor any requirement of expertise in other computer languages, such as Structured Query
Language (SQL) for script creation. This is the reason why our paper is titled as “A Practical Approach
to Automating SDTM”.

HOW TO HANDLE EXTERNAL DATASETS

A clinical trial usually has some external data, e.g., central safety lab, biomarkers, imaging data (MRI/CT,
PET scan) from Central Imaging Services, etc. They are typically stored outside the EDC database, and
their metadata are specified by Data Transfer Agreements (DTA) from different vendors. The finalization
of DTAs and the first data transfer usually come much later than the first EDC raw data extract.

The approach in this paper focuses on dealing with CRF data, not external data. The main reasons to
exclude external data for SDTM automation are the timing of its availability (for both metadata and actual
data) and simplifying the development of the macro to balance the level of automation with the cost of
meeting timelines.

Once the DTAs are finalized and the external data are available, the related SDTM mapping SAS
programs can be updated by inserting some code to the existing SAS programs for the inclusion of
external data. Please refer to [8] for an example of how external data are handled for the subject visits
(SV) domain programming.

When the external datasets are ready for inclusion, the team can decide if the new programming should
be added to either the %SDTM_Code_Generator or the related individual SDTM SAS program. The
decision requires balancing the generalization of the macro for future use with the spending of more
time/resources in updating the macro and its potential impact of timelines.

HOW TO LEVERAGE THE EXISTING MASTER-ANNOTATION FOR A NEW STUDY

One can leverage the existing master-annotation as an automation template for new studies. We will
explain the process from our working experience with two oncology studies.

16

We completed SDTM programming for two studies, and their EDC databases were both built by
Medidata’s Rave. Let us name them as Study-101 and Study-102, respectively.

SDTM programming for Study-101 was first completed at the very early stage of the study. Hence, its
master-annotation-101.xlsx and %SDTM_Code_Generator had been fully developed. Before starting to
work on SDTM automation for Study-102, we compared its ALS with Study-101’s and got the following
five output files shown in Table 19.

Output
File
Name

Output File Label Function

F1 Common variable names from
common datasets

Identify discrepancies in variable attributes, which could potentially impact the
macro for Study-102.
e.g., the raw dataset variable IE.IETESTCD is a character variable in Study-101
but numeric in Study-102. Raw dataset variable IETESTCD being numeric is
problematic for SDTM programming since IETESTCD is a standard SDTM
variable that should be character.

F2 All variable names only included
in Study-101

Identify variables potentially being omitted from Study-102.
e.g., Raw variables UV.UVREAS and UV.UVREAS_O (“Reason for Unscheduled
Visit” and “Other, Specify”) were in Study-101 but not in Study-102.

F3 All variable names only included
in Study-102

Identify variables that need new annotations.
e.g., CM.CMDOSFRM, ICE.ICETOTAL (“ICE Total Score”) were added to the CM
and ICE forms in Study-102.

F4 All variable names only included
in Study-101 among common
datasets

Identify variables with different variable names from the same CRF.
e.g., ICE.IAYN (“Was ICE Assessment performed?”) from Study-101 vs. ICE.
ICEPERF from Study-102.

F5 All variable names only included
in Study-102 among common
datasets

Table 19. Five Outputs from the Comparison of ALSs between These Two Studies

Per these five files, the summary tables are shown by Table 20 and Table 21, which show the similarities
(same CRF names and same variable names from the same CRF) and dissimilarities of CRFs for these
two studies. Out of 80 CRFs in Study-101 and 67 CRFs in Study-102, there were 50 common CRFs
between the two studies, and a sample of these common forms is shown in Table 22. Not surprisingly,
they are from standard safety domains.

Study Number Number of CRFs Number of Common
CRFs

Number and Percentage
of Unique CRFs

Total Number of Variables

Study-101 80 50 (62.5%) 30 (37.5%) 906

Study-102 67 50 (74.6%) 17 (25.4%) 678

Table 20. Tabulation of CRFs From Two Studies

Study Total Number of Variables Number and Percentage
of Common Variables

Number and Percentage of Unique Variables

Study-101 906 410 (45%) 496 (55%)

Study-102 678 410 (60%) 268 (40%)

Table 21. Tabulation of CRF Variables From Two Studies

EDC DATASET NAME EDC DATASET LABEL SDTM DOMAIN

AE Adverse Events AE

CM Prior and Concomitant Medications CM

DM Demographics DM

ECHO Echocardiogram / MUGA FA

EG 12- Lead ECG - Single Timepoint EG

EN Enrollment DS

EOS End of Study DS

IC Informed Consent DS

IE Inclusion and Exclusion IE

MH Medical History MH

SS Survival Status SS

SUBJ Subject Registration DM

VS Vital Signs VS

Table 22. Examples of Common CRFs From Two Studies

17

The EDC DATASET NAME (FormOID) and VARIABLE NAME (FieldOID) were combined as the key to
merge the ALS of Study-102 with master-annotation-101.xlsx, bringing in the other columns (CRF
annotations and other variables as specified in Table 10) of master-annotation-101.xlsx for CRFs and
variable names that were common to these two studies. This newly augmented file was used as a starting
point to complete master-annotation-102.xlsx, and users only needed to fill in the other columns (e.g.,
CRF annotations) for new CRFs and variables that were unique to Study-102. Table 23 below shows an
example of master-annotation-102.xlsx with the first column indicating the variables that need additional
manual work to complete their master-annotation record.

Need New
Annotation

EDC
DATASET
NAME

SDTM
DOMAIN

EDC DATASET LABEL Order VARIABLE NAME VARIABLE LABEL SDTM VARIABLE

 EN DS Enrollment 1 ENRSF_STD Was Subject Enrolled? [NOT SUBMITTED]

 EN DS Enrollment 3 ENRDAT Enrollment Date DSSTDTC

 EN DS Enrollment 4 ENPHASE_STD Study Phase PHASEENR in SUPPDS

 EN DS Enrollment 5 ENPART_STD Study Part PARTENR in SUPPDS

Y EN DS Enrollment 6 ENCOHRT_STD Study Cohort COHORT in SUPPDS

 EN DS Enrollment 8 ENSFDAT Screen Fail Date DSSTDTC

 EN DS Enrollment 9 ENRSP_STD Screen Failure Reason DSTERM

 EN DS Enrollment 10 ENRESCR_STD Was Subject Re
Screened?

SUBJRESC in SUPPDS

 ECHO FA Echocardiogram / MUGA 1 ECHOYN_STD Was ECHO or MUGA
performed?

[NOT SUBMITTED]

Y ECHO FA Echocardiogram / MUGA 2 ECHOMETH_STD If Yes, method of
assessment performed?

ECHOMETH in SUPPFA

 ECHO FA Echocardiogram / MUGA 3 ECHODAT Test Date FADTC

 ECHO FA Echocardiogram / MUGA 4 ECHOORRES Ejection Fraction FAORRES when
FATESTCD = LVEF

 ECHO FA Echocardiogram / MUGA 5 ECHOORESU_STD Ejection Fraction Units FAORRESU

Table 23. An Example of Master-Annotation-102.xlsx

Per Table 21, we had 410 variables that were in both Study-101 and Study-102 and 268 variables unique
to Study-102 that needed manual work to complete master-annotation-102.xlsx. Thus, 60% of all
variables for Study-102 were “borrowed” from Study-101, and only 40% of the variables required extra
manual work for master-annotation completion. (The majority of that 40% was from the CRFs for efficacy
data.) By utilizing the existing master-annotation for Study-101, huge time savings and high efficiency
were achieved for Study-102! Higher standardization of CRFs could contribute to even more high-quality
programming efficiency across studies!

HOW TO LEVERAGE THE EXISTING %SDTM_CODE_GENERATOR FOR A NEW
STUDY

For a new study, once the master-annotation and SDTM specifications are finalized by leveraging the
method introduced in the previous section, %SDTM_Code_Generator can then be adapted to the new
study for SDTM automation.

The five outputs from Table 19 should be carefully reviewed. The SAS code for
%SDTM_Code_Generator should be carefully checked for mentions of the variables identified from the
review, especially those from F1, F4, and F5 which could potentially require some SAS coding updates.
Special attention should also be paid to the variables flagged as “Need New Annotation” from F3 (see
Table 23 for some examples) as these might require updates to the macro’s SAS code. Variables from F2
should not have any impact.

The macro’s output files (i.e., SDTM mapping SAS programs) should also be carefully reviewed,
especially for SAS code pertaining to variables in F3. The programming validation process should be
strictly followed. Please refer to the following section for the scalability of this new approach.

Our working experience is that there was almost no change of the macro for the safety domains (except
for IEDTC in IE.sas due to the difference between two EDC database builds), but some changes had
been made to the efficacy domains such as RS, TR, and TU. While we were finalizing the macro for the
second study, we also updated the macro for the first study to make it more generalized to both studies. It
has been an adaptive process.

18

INTRODUCTION TO THE SCALABILITY OF OUR NEW PRACTICAL APPROACH

So far, we have illustrated this new practical approach to automating SDTM. For the first study, one
needs to develop the master-annotation spreadsheet (but can leverage existing CRF specifications) and
the %SDTM_Code_Generator macro from scratch. However, it is still a more efficient and less error-
prone process than the SAS template programs suggested in Table 1. Once one has fully developed the
master-annotation and macro for a clinical study, one can adapt them for new studies.

The ease of adaptability depends on the similarity of CRF designs and specifications of new studies
compared to the first study. Table 24 below lists different scenarios of what new studies’ EDC or CRF
setup may be like relative to the first study.

Scenario of A New
Study Per An EDC
Vendor

CRF Specifications of An
EDC Database

Similarity and Dissimilarity of Safety and
Efficacy Data

Same EDC vendor Similar CRF Specifications Similar CRF designs and CRF specifications for
safety data but dissimilar CRF specifications for
efficacy data if different indications

Similar CRF designs and CRF specifications for
both safety data and efficacy data if the same
indication

Different EDC vendors Different CRF Specifications Similar CRF design for safety data but dissimilar
CRF design for efficacy data if different indications

Similar CRF design for both safety data and
efficacy data if the same indication

Table 24. Different Scenarios of a New Study’s EDC or CRF Setup

In the case where new studies use the same EDC vendor, we’d expect CRF form design and
specifications to be relatively similar, especially for safety data. Thus, we can easily leverage and adapt
the existing master-annotation and %SDTM_Code_Generator for those new studies. Table 25 provides
suggestions on how to adapt our SDTM automation tools for new studies with similar CRF specifications
due to using the same EDC vendor.

Scenario of A New Study Master-Annotation %SDTM_Code_Generator

Similar CRF Specifications for safety
data but dissimilar CRF design for
efficacy data

Leverage the existing
master-annotation from
the first study

Add new programming to account for
new/different efficacy data

Similar CRF Specifications for both
safety data and efficacy data

May need a little tweaking

Table 25. Suggestions for Adaptation to New Studies With EDC Databases Built by the Same
Vendor

In the case where new studies use a different EDC vendor, we’d expect CRF form design to be
somewhat similar but the actual CRF specifications to be different. More manual work will need to be
done to update the SDTM automation tools, in particular the master-annotation spreadsheet, to account
for the different CRF specifications. Table 26 provides suggestions on how to adapt our SDTM
automation tools for new studies with different CRF specifications due to using different EDC vendors.

Scenario of A New Study Master-Annotation %SDTM_Code_Generator

Different CRF Specifications: Similar
CRF design for safety data but
dissimilar CRF design for efficacy
data

Consider as a new study.
Leverage CRF specifications
and annotations for master-
annotation. However, need to
manually fill in key columns
from Table 10 where the
origin is not “ALS”.

Add new programming to account for
new/different efficacy data

Different CRF Specifications: Similar
CRF design for both safety data and
efficacy data

May need a little tweaking

Table 26. Suggestions for Adaptation to New Studies With EDC Databases Built by Different
Vendors

19

INTRODUCTION TO OUR VALIDATION PROCESS FOR SDTM PROGRAMMING

The development of %SDTM_Code_Generator starts only after CRF annotations and SDTM
specifications pass the review and validation process as they are the inputs of the macro as shown in
Figure 2.

The traditional approach for SDTM dataset validation requires programmers to develop an independent
mapping SAS program. This double programming requires more resources and time since it essentially
doubles development efforts.

Our SDTM programming validation consists of the following three steps: code reviewing, real data testing,
and developing independent mapping SAS programs to validate relatively complicated SDTM datasets as
needed per the team’s decision. This validation process validates both the macro and each SDTM
mapping SAS program. Figure 4 below depicts the new validation process.

Figure 4. The Logic Flow of Our SDTM Programming Validation Process

When each SDTM mapping SAS program (e.g., DM.sas) is generated from the macro call, the macro
developer and users work together to review the code to identify bugs before the testing phase until they
make certain that the coding logic meets domain requirements.

Once raw data are available, each SDTM mapping SAS program is tested by using real data. Users walk
through each data block to make sure that the execution is as expected and meets the requirement. This
step also includes retesting after bug fixing, and this could repeat several times for the accumulating real
data while the study is ongoing until the user ensures that the SAS program is thoroughly tested and
meets the requirements of the domain.

The team also identifies and decides which SDTM domains need traditional totally independent
programming validation. For example, the TR (Tumor/Lesion Results) domain from one study included
data from 13 CRFs, which had 190 variables in total (Table 27), so we developed an independent SAS
program to validate the TR domain.

CRF Name EDC Raw Data Label

INL Lesion Assessment - New Lesion - CLL/SLL

INTL1 Lesion Assessment - Non-Target Lesions - Baseline - CLL/SLL

INTL2 Lesion Assessment - Non-Target Lesions - Post-Baseline - CLL/SLL

ITL1 Lesion Assessment - Target Lesions - Baseline - CLL/SLL

ITL2 Lesion Assessment - Target Lesions - Post-Baseline - CLL/SLL

NL Lesion Assessment - New Lesion

NTL1 Lesion Assessment - Non-Target Lesions – Baseline

NTL2 Lesion Assessment - Non-Target Lesions - Post-Baseline

ORG Organ Enlargement Assessment

PET1 PET Scan- Baseline

PET2 PET Scan- Post-Baseline

Code Reviewing
 - Identify and fix bugs
 - Make sure each
 program meet the
 requirements logically

Real Data Testing
 - Make sure the execution of
 SAS code is expected &
 meets the requirements
 - Could repeat several times
 for the accumulating real
 data as the study is ongoing

Developing Independent
Mapping SAS Program
 - Identify relatively complicated
 domains per the team’s decision
 - Develop independent SAS
 programs to validate SDTM
 datasets by PROC COMPARE

Complete

Validation
Identify Domains

for Independent

Programming

Validation

Validator: Walk

Through Each

Data Block After

the Execution of

SAS Code

Macro Developer

& Validator:

Review Each

SDTM SAS

Program

Finalize the

SDTM

Datasets

%SDTM_Code_Generator:

Generate Each SDTM

Mapping SAS

Program

As

Needed

Raw Data Available

20

CRF Name EDC Raw Data Label

TL1 Lesion Assessment - Target Lesions - Baseline

TL2 Lesion Assessment - Target Lesions - Post-Baseline

Table 27. An Example of 13 Source CRFs for the TR Domain

Solid SDTM programming expertise and working experience from the macro developer and the users can
shorten the development process and is the key to high quality delivery of SDTM datasets. This new
approach to automating SDTM is user-friendly as users can directly review the output code (instead of
facing a "black box") and test it with real data, ensuring that each SDTM dataset they produce is of the
highest quality. Since only a fraction of SDTM datasets need independently developed SAS programs for
programming validation, a lot of time and resources are saved compared to the traditional way of
validating all SDTM datasets or the situation where a sponsor must have an in-house or outsourced
SDTM programming team independently develop SDTM SAS programs to validate the automated SDTM
datasets provided by vendors.

HOW TO GUARANTEE ALL RAW DATASET VARIABLES ARE MAPPED INTO
SDTM

How does one avoid accidental omissions of raw dataset variables from SDTM, which would be a failure
of SDTM programming? Given limited resources and timelines, it is not feasible to manually review each
raw dataset variable against the targeted SDTM SAS mapping program(s). Therefore, automation to
detect these omissions is the key to the solution for success. Once the omitted variables are detected, the
errors can be fixed. Hence, this step guarantees all raw dataset variables are accounted for in SDTM
programming.

Another functionality of the macro %SDTM_Code_Generator is that it can automatically detect any raw
dataset variables unmapped in SDTM. As mentioned in an earlier section, the SAS code generated by
our macro is saved in a SAS dataset before it is output to a SDTM mapping SAS program. This SAS
dataset contains all variables from the master-annotation specified in Table 10 in addition to the
previously mentioned lines and _order variables. Each call of the macro merges this dataset with the
master-annotation by EDC DATASET NAME and VARIABLE NAME for a specific domain. Any records
that have non-missing values for EDC DATASET NAME and VARIABLE NAME but are missing lines are
warning signs that those raw dataset variables may not have been mapped or included in the SDTM
mapping SAS program. One exception would be the records where SDTM VARIABLE = “[NOT
SUBMITTED]”, which marks raw dataset variables that are intentionally not submitted. Table 28 shows an
example of raw dataset variable AENOW from the AE form, whose omission was detected by the macro.
However, as indicated by its SDTM VARIABLE column, AENOW was intentionally not mapped to any
SDTM datasets.

EDC DATASET
NAME

EDC DATASET
LABEL

VARIABLE NAME VARIABLE
LABEL

SDTM DOMAIN SDTM VARIABLE

AE Adverse Events AENOW Form last updated
(derived for edit
check)

AE [NOT
SUBMITTED]

Table 28. An Example of Raw Dataset Variable(s) That Are Not Mapped to SDTM AE as Identified
by %SDTM_Code_Generator

HOW TO HANDLE EDC DATABASE CHANGES

It is very typical for the EDC database to change due to a variety of reasons, such as protocol changes,
EDC database build errors, etc. The newly updated ALS or CRF specifications are provided along with a
document, such as a “Database Change Request Form”. The simple solution is to use SAS
programming to compare the new CRF specifications to the original one. The output file can help the
team pinpoint the changes to examine the impact on SDTM programming. The worst-case scenario is to
consider it as a new study. The previous sections present how to leverage the existing master-annotation
and %SDTM_Code_Generator for a new study.

We experienced a situation where one study’s ALS was updated three months after the EDC database
was in place. The comparison between these two ALS files showed that two safety lab tests had been

21

added and one variable’s label had been changed. We manually added these tests into master-
annotation and reran the macro to generate LB.sas. After reviewing the mapping sections for these two
tests in the output LB.sas and confirming that they met our requirements, we finished our update process
for SDTM LB programming.

This is another example that further illustrates what a powerful tool CRF specifications are for SDTM
automation.

HOW TO HANDLE THE SITUATION WHERE CRF SPECIFICATIONS FROM AN EDC
DATABASE ARE UNAVAILABLE

As introduced above, CRF specifications from an EDC database (or an ALS) serve as the repository of all
raw dataset names and their variable attributes in a study. If the CRF specifications from an EDC
database or the ALS were not available for any reason, one would need to use the SAS PROC
CONTENTS or PROC DATASETS procedure to retrieve the metadata from the validated test data or the
first production transferred data. However, there are typically a lot of variables beyond those collected on
CRFs, e.g., intermediate variables dedicated to database setup. Hence, one would have to spend some
time in manually identifying which variables should be included in a file serving as simulated CRF
specifications by cross-checking CRF annotations one-by-one. Once the simulated CRF specifications
are finalized, one can generate a master-annotation spreadsheet and follow the approach introduced in
the previous sections for SDTM automation.

CONCLUSION

This paper presented a new approach to automating SDTM using a metadata-driven method that
leverages CRF specifications and SDTM standards. We compared the workflow between our new
approach and the standard one. We introduced our master-annotation spreadsheet, which leverages
CRF specifications from an EDC database (in particular, the Architect Loader Specification of Medidata’s
Rave EDC), and our macro %SDTM_Code_Generator. We discussed our experience on two different
types of oncology studies and demonstrated the practicality of our new approach through its efficiency,
flexibility, transparency, and scalability.

We are confident that the macro will become more mature as our new approach is applied to more
studies down the road. The intent of this presentation is to share our ideas with readers to aid them in
automating SDTM with much more efficiency and higher quality that is applicable across multiple clinical
studies within an organization.

REFERENCES

[1] U.S. Department of Health and Human Services, Food and Drug Administration, Study Data Technical
Conformance Guide: Technical Specifications Document. October 2023. Available at
https://www.fda.gov/media/153632/download

[2] Keith Hibbetts, Eli Lilly and Company, Automating SDTM: A Metadata-Driven Journey, PharmaSUG
2023

[3] Xiangchen (Bob) Cui; Scott Moseley, and Min Chen. A Cost-Effective SDTM Conversion for NDA
Electronic Submission. Proceedings of the Pharmaceutical SAS® Users Group Conference, PharmaSUG
2011

[4] Xiangchen (Bob) Cui; Hao Guan, Min Chen, and Letan Lin. Automate the Process to Ensure the
Compliance with FDA Business Rules in SDTM Programming for FDA Submission. DIA 2018 Global
Annual Meeting Professional Poster; Proceedings of SAS Global Forum 2019; Proceedings of the
Pharmaceutical SAS® Users Group Conference, PharmaSUG 2019

[5] FDA Validator Rules. December 2022. Available at https://www.fda.gov/industry/fda-data-standards-
advisory-board/study-data-standards-resources

[6] CDISC Study Data Tabulation Model and SDTMIG v3.4 at http://www.cdisc.org/sdtm

https://www.fda.gov/media/153632/download
https://www.fda.gov/industry/fda-data-standards-advisory-board/study-data-standards-resources
https://www.fda.gov/industry/fda-data-standards-advisory-board/study-data-standards-resources
http://www.cdisc.org/sdtm

22

[7] Roman Radelicki; Swapna Pothula. End to End SDTM Automation: A Metadata Centric Approach.
PHUSE US Connect 2019

[8] Xiangchen (Bob) Cui; Jessie Wang, and Min Chen. A New Approach to Automating the Creation of
Subject Visits (SV) Domain. Proceedings of the Pharmaceutical SAS® Users Group Conference,
PharmaSUG 2024

ACKNOWLEDGMENTS

Appreciation goes to PK Morrow for her invaluable review and comments.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Xiangchen (Bob) Cui, Ph.D.
Enterprise: CRISPR Therapeutics AG
Address: 105 West 1st Street
City, State ZIP: Boston, MA 02127
Work Phone: 908-240-4086
E-mail: xiangchen.cui@crisprtx.com

Name: Min Chen
Enterprise: CRISPR Therapeutics AG
Address: 105 West 1st Street
City, State ZIP: Boston, MA 02127
Work Phone: 857-928-4347
E-mail: min.chen@crisprtx.com

Name: Jessie Wang
Enterprise: CRISPR Therapeutics AG
Address: 105 West 1st Street
City, State ZIP: Boston, MA 02127
Work Phone: 214-668-2107
E-mail: jessie.wang@crisprtx.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Any brand and product names are trademarks of their respective companies.

mailto:xiangchen.cui@crisprtx.com
mailto:min.chen@crisprtx.com
mailto:jessie.wang@crisprtx.com

23

APPENDIX 1. SUMMARY OF MACROS CALLS USED BY %SDTM_CODE_GENERATOR

SDTM
Variable

Macro Name Description SDTM
Domains

Example Macro Call

--DTC

map_dtc_date
and
map_dtc_time

Derive –DTC
variables when there
are partial dates

All Domains

except for
DM and
SV

%map_dtc_date(_DATEVAR=AESTDTC,_RAWDATE=AESTDAT);
%map_dtc_time(_DATEVAR=AESTDTC,_RAWTIME=AESTTIM);

RACE,
RACE1, …,
RACE5

map_race Derive RACE
variables for DM and
SUPPDM

DM,
SUPPDM

%map_race(_NUMFL=Y,_VAR=RACE1 RACE2 RACE3 RACE4 RACE5 RACE6);

--SEQ get_seq Derive --SEQ
variables based on
provided key
variables

AE, CE, CM,
DS, EG, EX,
FA, HO, IE,
LB, MH, PC,
PR, QS, SS,
VS

%get_seq(_DOMAIN=LB,_SORTKEYS=STUDYID USUBJID LBCAT LBTESTCD
VISITNUM LBDTC);

--DY get_dy Derive --DY variables
based on provided --
DTC variables

AE, CE, CM,
DS, EG, EX,
FA, HO, IE,
LB, MH, PC,
PR, QS, SS,
VS

%get_dy(_DATEVAR=LBDTC,_DAYVAR=LBDY);

--LOBXFL get_lobxfl Derive the Last
Observation Before
Exposure Flag

EG, FA, LB,
PC, QS, VS

%get_lobxfl(_DATEVAR=LBDTC,_DAYVAR=LBDY,_DOMAIN=LB,
_LASTVAR=LBTESTCD,_RESVAR=LBSTRESN,
_SORTVARS=USUBJID LBCAT LBTESTCD LBDTC);

--BLFL get_blfl Derive the Baseline
Flag

EG, FA, LB,
PC, QS, VS

%get_blfl(_DATEVAR=LBDTC,_DAYVAR=LBDY,_DOMAIN=LB,
_LASTVAR=LBTESTCD,_RESVAR=LBSTRESN,
_SORTVARS=USUBJID LBCAT LBTESTCD LBDTC);

RFSTDTC get_rfstdtc Derive RFSTDTC DM %get_rfstdtc(_DATA=EX1 EX2 EX3,_DATEVAR=EX1STDAT EX2STDAT EX3STDAT,
_SUBJVAR=SUBJECT,_TIMEVAR=EX1STTIM EX2STTIM EX3STTIM);

RFENDTC get_rfendtc Derive RFENDTC DM %get_rfendtc(_DATA=EX1 EX2 EX3,_DATEVAR=EX1ENDAT EX2ENDAT EX3ENDAT,
_SUBJVAR=SUBJECT,_TIMEVAR=EX1ENTIM EX2ENTIM EX3ENTIM);

RFXSTDTC get_rfxstdtc Derive RFXSTDTC DM %get_rfxstdtc(_ASSIGN=RFSTDTC,_DATA=,_DATEVAR=,_SUBJVAR=,_TIMEVAR=);

RFXENDTC get_rfxendtc Derive RFXENDTC DM %get_rfxendtc(_ASSIGN=RFENDTC,_DATA=,_DATEVAR=,_SUBJVAR=,_TIMEVAR=);

RFPENDTC get_rfpendtc Derive RFPENDTC DM %get_rfpendtc(_CUTOFFDT=&cutoffdt.,_DATEVAR=EOSDAT);

TRT get_trt Derive ARM-related
variables in DM

DM %get_trt(_DRGCRIT=not missing(EX3STDAT),_DRGDATA=EX3,
_SFCRIT=ENRSF_STD='N',_SFDATA=EN,_SUBJVAR=SUBJECT);

AETRTEM get_aetrtem Derive the TEAE
Flag to be included in
SUPPAE

SUPPAE %get_aetrtem();

IEDTC get_dtc_dov Derive --DTC using
date of visit from raw
data when a specific
form is missing a
date field

IE %get_dtc_dov(_DATEVAR=IEDTC,_DOVDATA=SV,_DOVDATE=VISDAT,
_SORTVARS=SUBJECT FOLDER);

