PharmaSUG 2024 - Paper PO-158

If its not broke, don't fix it; existing code and the programmers' dilemma
Jay lyengar, Data Systems Consultants LLC

ABSTRACT

In SAS shops and organizational environments, SAS® programmers have the responsibility of
working with existing processes and SAS code which projects depend on to produce periodic
output and results and meet deadlines. Some programming teams still cling to the old adage; if
it not broke, don't fix it. They’ve come to depend on code which runs clean, and is reliable.
However, besides processing with no errors and warnings. there other criteria to judge the
quality of a SAS program. Programming guidelines dictate that code should be well-
documented, readable, and efficient, and conform to best practices. This paper challenges the
conventional wisdom that code which works shouldn’t be modified.

INTRODUCTION

Programming work can be divided into two different project tasks; developing code from
scratch, and modifying and updating existing code. This is the case regardless of the type of
employment, whether full-time, contract, or consulting. It is usually the case when a programmer
is brought in on a contract basis that they’re needed to update and modify existing code. A full-
time employee may have left the company, and they need a temporary replacement to fill the
void. So the contractor takes the role of a troubleshooter/firefighter who's needed to keep the
ship afloat until they have more time to go through the recuiting process, and hire a full-time
developer. In this paper, | suggest procedures a programmer should follow and strategies to
take for working with existing code. | also make specific recommendations for how to go about
working with legacy SAS® code.

THE PROCESS OF REVISING CODE

How does a programmer go about renovating or updating existing code. Its important and
necessary that a programmer understand the SAS process which they’re going to modify.
Understanding code another programmer has developed rests on several aspects of the code;
clarity, readability documentation of the code. Hopefully, the code you’re working with has been
well-formatted using white space, indentation and other elements of style. If not, the task of
understanding the code becomes more challenging.

Good documentation includes the purpose of the program, the author of the code, and the date
it was written. This usually is contained within a program header at the start of the program. A
well documented program will contain comments throughout the program which describe each
step or key steps in the code. This makes it easier to understand what is happening in each
step, as well as connect one step to the next in understanding the data flow throughout the
program. Other key documented information includes the source SAS data sets or external files
which are referenced and used to perform data extraction, and SAS output or output SAS data
sets which are produced from the program.

FIND THE DEVELOPER WHO WROTE THE CODE

Hopefully the code is well-documented so the process of understanding the code will be straight
forward. However, most of the time, a SAS consultant is brought in on a project to perform tasks
which no one on staff is able to complete. Its entirely possible that the code was written by a
former employee, who's now left the company. Its ideal to find the original author of the code, if
possible. If the author of the code is still with the organization, then a best practice would be to
put that programmer in charge of maintaining the code, since they’re the most familiar with it. In
this case, it wouldn’t be necessary to bring in an external consultant for the project.

Find the Programmer who wrote the code!

Since the company is bringing in a consultant, its unlikely that the original author of the code is
still employed by the company. On some projects, project managers might try to track down and
contact former employees who authored the code. The former employee might not be willing to
assist and discuss the project. In my own experience, I've worked for companies whom I've
been contacted by after I've left the company to discuss projects | worked on while | was with
them.

Nevertheless, as a SAS consultant, the search for the author of the code shouldn’t involve going
to great lengths, and tracking down professors at Stanford University as Vince Vaughn and
Owen Wilson did in the movie ‘The Internship’.

/***********************************/

/* Name: GET CASE MASTER.SAS */
/* Date: 08/12/22 */
/* Authors: JI */
/* */
/* _________________________________ */
/* Maintained By: JI */
/* _________________________________ */
/* Purpose: */
/* */
/* Downloads Case Master file from */
/* AWS bucket into a text file */
/* */
/* Imports text file and converts */
/* to permanent SAS data set */
/* */
/* Excludes records from */
/* SAS data set. */
/* */
/* _________________________________ */
/* Input Files: AWS Text File */
/* _________________________________ */
/* Output Files: Case Master.txt */
/* Case Master */

/***********************************/

Figure 1. Program Header documenting Author, Date, and Purpose of Program

In Figure 1, is a standard program header which documents key information of the program.
The name of the developer who authored the code, and maintained the code is provided in the
header as initials. The program header includes a description and purpose of the program,
along with name of the program, and the date it was written. These are all important elements
which should be required with every program which is written. Other useful information includes
the source files, or input data sets used, and the output files which are produced from the code.

FORMAT THE CODE

The code which you are handed might be written in a style which is unreadable or illegible.
Some programmers don’t incorporate elemtents of style in their program which make the code
easy to follow. These aspects include indentation, white space (adding lines between steps of
the program), capitalization and use of case.. Instead DATA STEPS might be stacked on top of
SAS PROCS in ensuing steps, making it hard to distinguish step boundaries. Multiple SAS
statements might be packed together on one line of code, rather than giving each statement its
own separate line in the program.

“Format the Code”

In Figure 2 below is a screenshot of an Enterprise Guide session, with a SAS program opened
in the editor. Steps in the program have been stacked directly on top of each other which makes
it challenging to discern the flow of the program. Besides line spacing, the code was written
without indentation to aid the reader in deciphering it. Its not uncommon to encounter existing
code written in this style on projects which a contract SAS programmer is assigned to.

@ * daily version_sas_code_main_new.sas - SAS Enterprise Guide - X
File Edit View Progem Tools Help [%+ [0 @ o %, No profile selected
v

@ L] ES |« Sharer | f¥ Debug Bl Local v
Code Log
794 - data;

795! set ct.ctsla;run;

736 cproc print data=ct;
797, where mmwr= '21nov2021'd;

798] var created_date mmwr idl_intake_number attempted 24 rsachsd_24 b24h a24h Number of Tsxts_Sent_ c_intake;
799 run; B B B B B - - T
800=proc tabulate data=ct;

301 class created date;

8020 where '01dec2020'd <= created date <='30nov2021'd;

803] table created date¥N ALL="Total";
204] run; -

805 =proc tabulate data=ct;

306! class mmwr;

807! where '01dec2020'd <= created_date <='30nov2021'd;

808} table mmwr, N ;
808} run;

810improc tabulate data=ct;

811} class created date attempted 24 b24h;

812} where created_date ='10dec2021'd;

813] table created date*N attempted 24%n b24h*n ALL="Total";

814} run;*/

815] Wwmkrmkad kA wkh bR a ¥]aimes request (12/13/21) & ek bk bk d bk 7:
816i-data ctf;

817; set ct;

818} if '0lsep2021'd <= created_date <='30sep2021'd then dt="September";
813 if '01loCcT2021'd <= created date <='310CT2021'd then dt="october";
820] if '0lnov2021'd <= created date <='30nov2021'd then dt="November";
821} run;

822-data ctfZ;

823} set cotf;

E\RIDOH Projects\SAS Code\CT_SLA code\daily version_sas_code_ma... Line 822, Col 1 Zoom: 100%

Figure 2. Screenshot of SAS program in Enterprise Guide session

One of the features and capabilities of SAS Enterprise Guide is the ability to automatically
format code according to specific criteria. The ‘FORMAT CODE’ feature allows you the ability to
insert line spaces in between lines of code or between steps, and indentation for specific
statement and keywords.

Figure 3 displays the same code example in Figure 2 with the addition of the drop-down menu
showing the ‘Format Code’ option selected. To use the ‘FORMAT CODE’ feature, right-click in
the program editor, and select ‘FORMAT CODE’ from the drop-down menu. This will
automatically convert your program. There’s also a ‘FORMAT CODE’ button on the toolbar
which you can use.

@ *daily version_sas_code_main_new.sas - SAS Enterprise Guide - X

File Edit View Progam Tools Help [%+ [0 G+ @ | o %, No profile selected
2 Run BE xS) F5 & Share~ | ¥ Debug [E Local *

Code Log

842] klass dt ;

843 wvar dt_exp;
844 table dt, (dt exp* (MEZN)) ;

845 witle "Average dave . . T T ez
846 run;

847iHproc tabulate data=

848! class dt RCS_Settin ¥ Cut Ctrl+X
849 war dt_exp % Copy Coiec
850! table dt* RCS_Sett ®p* (MEAN)) ;
851] title "Average days |

852 rum; fi] Delete Del

853imdata ctf3; |

854] set ctf;

855, Lif dt in ("Septembe
856! dt exp= (INTCK('day Expo
857, run; c
858|Hproc tabulate data—
859 class dt ;

860; war dt_exp; v Show line numbers

861 gable dt, (dt_exp*(properties

862 title "Average days Irom i expsure To SET;
863] run;

864 Fproc tabulate data=ctf3;

Selectall Ctrl=A

Format code Ctrl+Shift+B

split

865 class dt RCS_Setting of Exposure_ c intak ;
866 war dt_exp ;
867, table dt* RCS_Setting_of_ Exposure c_intak, (dt_exp*(MEAN}) ;

868; title "Average days from CT expsure to SE";

869 run;*/

EARIDOH Projects\SAS Code\CT_SLA code\daily version_sas_code_ma... Line 870, Col 1 Zoom: 100% {ifReady @0 A0

Figure 3. SAS program in Enterprise Guide session using ‘Format Code’ feature.

With the ‘FORMAT CODE’ feature, SAS Enterprise Guide will automatically apply these
elements to your code to enhance its readability. Using this feature is preferable to going
through the code line by line and manually adding line spaces between steps, and indenting
code inside of a DATA STEP or PROC.

Enterprise Guide 8.3 gives you the option of specifying where within your program blank lines
should be inserted, and in relation to what specific SAS statements and constructs.

If you go under the ‘TOOLS’ menu, then select ‘OPTIONS’, SAS will open up a dialog box with a
menu panel on the left side. From here, select ‘SAS PROGRAMS’. Then click on the ‘EDITOR
OPTIONS’ box at the top. This will open up the ‘ENHANCED EDITOR OPTIONS’ box with 4
new tabs. If you select the INDENTER’ tab, you’e screen should appear similar to Figure 4.

Fle Edit View Progam Toos Help | [4 [&+ @ @ | £ % Noprofi

(89 1 Coate Dakv_ x | @& Enhanced Editor Options X
@ StartPage [E]Program | [@] 1_CDeaths Daily...

ppearance | Autocomplete Indenter

, MMDDYYN6.);

of Rhode Island\

31} %put ay;
T eeesseesssesraressasssssasesrasessanseesd Reset Al Kl -

eng:

H Il © Type here to search

Figure 4. SAS EG session with ‘ENHANCED EDITOR OPTIONS’ and ‘INDENTER'’ tab.

In Figure 4 above is a screenshot of the Enterprise Guide session showing the INDENTER’ tab
and ‘ENHANCED EDITOR OPTIONS'. The ‘INDENTER'’ feature allows you to specify that
conditional logic constructs, do loops, and macro conditional logic all should appear on a single
line of code. In addition, you are able to specify tab definitions in number of spaces for indenting
purposes.

TEST RUN THE CODE

One of the first tasks which a SAS consultant needs to perform is to test run the code to enure it
works, and if necessary to debug the code of errors, warning, or notes such as uninitialized
variables. Testing code is an essential step in the development phase of software development.
Its mandatory to test code prior to putting it into production.

Executing and running code can be a time consuming process. The run time of your code can
be long depending on the size and scale of data you’re working with. Other factors affecting
processing time include the length of the code (number of lines of code), and the computing
resources available at your site, including memory, storage space, and internet bandwidth.

One good rule of thumb is to take a sample of the data you’re using, and perform a test run on
the sample. Another good practice is to test run the code without any observations. You can set
the number of observations which are processed using the OBS= and FIRSTOBS= options.
OBS= and FIRSTOBS= can be specified as global options or alternately as data set options.

MovieStillsDB.com

Find The Bug!

When test running lengthy code, | recommend using global options and specifying them at the
beginning of your program. This makes more sense than specifying the options every time you
read in a data set.

After you test run your code, the first thing you should do is check your SAS log. Its necessary
to examine your SAS log to ensure your run of the code didn’t generate any errors, warnings or
uninitialized variables. Its possible that your log may contain warnings, and even some errors
which may not indicate there was a problem with the results produced from your code.
Nevertheless, a clean log is a desirable goal because it gives others the peace of mind that
your code is problem-free.

If there are errors in your code, you need to figure out why the errors and/or warnings were
generated. It may be the case that a statement in your code was missing a semi-colon. It also
may be the case that you have unbalanced parentheses or quotation marks. Some other typical
situations where errors occur happen because variable names got misspelled, or variables
were specified in your code which aren’t found on a SAS data set. Nevertheless, you need to
find the errors and resolve them.

If you code is relatively short, you may be able to scroll through the SAS log to search for errors
and warnings. This is a technique which I've used before to examine the log, but | don’t
recommend it exclusive of other methods.

A best practive technique is to use the FIND function to search for the words ‘ERROR’, and
‘WARNING’ in your code. In Figure 5 is a screenshot of a SAS session and the SAS log, with
the search text box used to find the word ‘ERROR’.

=
E] File Edit View Teols Solutions Window Help
~« . e bwHI&an DRl 4 0@
NOTE: Copyright (c) 2016 by SAS Institute Inc., Cary, NC, USA. ~

OTE: SnS (v Propristary Goftware 9.4 (TSIH7 HBCS3170)
Licensed to Rl DEPT OF HEALTH, Site 70250673.
OTE: This session is executing on the X64_IOHOME platform.

0TE: Analytical products:
SAS/STAT 15.2
0TE: Additional host information:

XB4_10HOME WIN 10.0.19041 Workstation

2
0TE: SAS initialization used: Find ! fa
real time 5.01 seconds

cpu time 4.49 seconds Find text ERROR I Find Next I

Proc Import Datafile="C:\Users)Duner\Documents Direction Close
! Files\Mathenatica_Exercise\HOSP I TAL_SAEFTY_DAex¢ []Match whole word ony Ou
Out=Hosp_Safety =
DBNS=XLSX [Match case ® Down
REPLACE ;
SHEET="HOSP I TAL_SAFETY'
GETNAMES=YES ;

L TLE Y

Run;

0TE: Variable Name Change. HOSP.ID -> HOSP_ID

0TE: One or more variables were converted because the data type is not supported by the U8
engine. For more details, run with options MSGLEVEL=1.

0TE: The inport data set has 3263 observations and 18 variables.

0TE: WORK.HOSP_SAFETY data set was successfully created.

0TE: PROCEDURE IMPORT used (Total process time):

real tine 2.18 seconds
cpu time 1.03 seconds
Proc Inport Datafile='C:\Users\Duner\Docunents\SAS

v

9 ! Files\Mathematica Exercise\HOSPITAL SAEFTY DhAexercise.xlsx’

[Outout - (Untitled) [T Lo - Untitiear [# UMB Exercise | @ Mathematica Exercise ...| [81 Results Viewer - 545 Ou..
WARNING: No occurrences of "ERROR” found S C:\Users\Owner
- wi = = 1 Y sas] ' ool & 1B A
@ W - B & O @ & 1 Q e & 8 75°F Mostlycloudy ~ & 3 o0 0, [

Figure 5. SAS LOG with a search box to find errors.

You can access the FIND function by going to the EDIT menu and scrolling down to ‘FIND’.
Alternately, you can pull up the FIND search box by hitting CTRL-F on your keyboard. In the
example in Figure 5, SAS is unable to find any occurences of the word, ‘ERROR’ in the log, as
evidenced by the message at the bottom, “‘WARNING: No occurrence of ERROR found'.

| recommend searching for three words using the FIND function ‘ERROR’, ‘WARNING’, and
‘UNINITALIZED’. If SAS finds no occurences of any of these words in the log, you can be
reasonably sure that your program is problem-free. However, a thorough approach also involves
checking and examining SAS output as well as the log. This is necessary to validate the results
produced by your code. Checking SAS ouptut helps confirm that any analysis which was
produced by your code was performed correctly. Reviewing SAS output also validates the
assumptions made in performing the analysis of your data. Saving a copy of your SAS log wlll
be covered in the next section.

SAVE YOUR LOG

Once the testing phase of your code has been completed, it's a good idea to save a copy of
your SAS log from the test run. One reason you do this is so that others who might be uncertain
of the status of the task or project. For instance, your manager might be wondering whether to
trust the data or the SAS output which you provide to them. A copy of the the SAS log
demonstrates that your program is valid, and gives confidence that the data produced from your
program is valid as well.

Save your log, so that your work can be reviewed later.

The log provides some important information besides code validation information concerning
errors, warnings, and the like. The log provides a date-time stamp which provides the date and
time the code was executed. Saving a copy of the log then allows one to refer back to the code
to confirm when it was executed.

The SAS log also provides run-time and processing information for each step in your code. For
each step in your code, the log provides CPU time and REAL time. These are important metrics
to be used to improve processing efficiency and performance tuning of your code.

Processing information is useful during the testing phase of your SAS program. On a project,
higher-level managers and internal clients may complain that its taking a long time to produce a
deliverable. A copy of the SAS log with timing information will provide an explanation why that’s
the case.

There are multiple ways to save a copy of the log. The manual way is to use the FILE menu,
and choose ‘SAVE AS’. However, there are also automated ways to save the log. Using an
automated log-saving method prevents you from having to save the log manually every time you
run your code. SAS users tend to find the manual method of saving the log to be tedious and
cumbersome.

You can route the SAS log to an external file using PROC PRINTTO. PROC PRINTTO can also
be used to save SAS output to an external file with an .Ist extension. PROC PRINTTO must be
placed at the top of your program or before any SAS code which you want routed to external
files when executed. The code below is an example of PROC PRINTTO.

Proc Printto log="C:\Projects\SAS Files\SAS Logs\ETL Processl.log";
run;

One of the disadvantages of using PROC PRINTTO to save the log is the color-coded log
disappears from the LOG window. You no longer have the ability to browse and search the log
in the LOG window. The external file containing the log is a text file in black and white. While
PROC PRINTTO is an automated approach to log-saving, it is not the best choice when you
need to debug your code.

An alternate technique to saving the log is to use display manager or DM commands. These
display manager commands work much the same way they do when used from the command
line or prompt. When using DM commands within your code, you can chain multiple commands
back-to-back in a string. Below is an example of the DM command which saves the log to an
external file.

DM ‘Log;File “C:\Projects\SAS Files\SAS Logs\ETL Processl.log”;

With the DM command, you can place it at the end of your SAS program, and your color-coded
log in the log window will still be available for browsing and searching.

I recommend using the DM command for log-saving, since the other methods are too tedious, or
remove access to the log window. If you submit your SAS program in a batch session, the log
and output are automatically routed and stored in external files. However, this is much like the
outcome you get using PROC PRINTTO.

MODIFY THE CODE

As a contractor or independent consultant, working with existing SAS code you're handed on a
project, at some point there will probably either be a need or a desire to modify the code.
Modifications to the code can be simple and straight forward. Maybe you’ll need to update the
path where data is stored in a LIBNAME statement. Then again, maybe you’ll need to update
the source data set you're using in the program.

The changes to the code may also be more extensive and complex. You’re manager might
request that you streamline the code. Alternately, maybe you have an idea to restructure the
code, although its not part of the specified request.Yet again, It might make sense to convert the
code to a macro program and automate it, because it needs to be executed repeatedly.

In some environments I've been in, I've come across an attitude that’s part of the internal culture
of the company that existing SAS code and processes shouldn’t be modified. In these
situations, the code is production code and is executed on a regular basis. Thus, the
department is depending on the code to produce a deliverable to a client, internal or external.
The code works, so there’s no reason to change it. In short, ‘If Its not broke, why fix it.’

The existing code you're working with might be ‘okay’, meaning it runs free of errors and
warnings, or is otherwise clean. This doesn’t mean the code runs well. Maybe it works, but not
very efficiently. Its entirely possible the code isn’'t readable or formatted well. Just as Vince
Vaughn said in ‘The Internship’; ‘Okay isn’t great! Okay isn’t fantastic!’.

10

Okay Isn’t Great! Okay Isn’t Fantastic!

There could be a whole list of changes to the code which could improve it. The concern that
modifying existing prodution processes will cause programs to fail is largely based on fear. An
astute programmer knows that any changes made to production code need to be sufficiently
tested.

Before any madifications are made, a copy of the production code should be made. The copy of
the production code can then be modified and tested. While testing is being performed on the
new process, the original production code is kept in place. This way the routine process which
the team depends on won't be upset.

In Figure 6 below is a sample of code which is used to download and import a text file from
AWS in the cloud. The code uses PROC S3 to download the file, and then PROC IMPORT to
convert it to a SAS data set.

11

FILENAME MEDCOND "C:\SAS\SAS Temporary Files\ medical cond tables.txt";

Proc S3 Config="C:\Users\OneDrive-DHHS\DatalLayer\Cred\tks3.conf";
Get "/cdc-corefiles-datalayer-dataanalytics/medcond tables.txt"
"C:\SAS\SAS Temporary Files\medcond tables.txt";
Run;

Proc Import Datafile=MEDCOND
Out=Medical Conditions
Dbms=DLM
REPLACE;
Delimiter=TAB;
Getnames=YES;
Datarow=2;

Run;

data Medical ConditionsZ2;

set Medical Conditions;

if Person ID="IJKLMNOP54231534" then delete;
run;

data Medical Conditions;
set Medical Conditions2;
run;

proc datasets library=work;
delete Medical Conditions2;
run;

proc freq data = Medical Conditions;
tables file update date / nocum nopercent;
run;

Figure 16. SAS Code to download and Import Text File.

This code is followed by two data steps which remove records from the data set, and rename it,
and PROC DATASETS and PROC FREQ to delete a temporary data set and generate
frequencies respectively. The code contains 6 steps in total not counting the FILENAME
statement. The two DATA STEPS seem unnecessary given that the only action really being
performed is to delete records using an IF-THEN-DELETE statement. The second DATA STEP
is only used to rename the data set back to its original name.

In Figure 7 is another sample of code. The code in Figure 17 is the same example which is
presented in Figure 6. However, The code in Figure 6 has been modified. The code in Figure 7
contains only 4 steps, 2 steps fewer than the 6 steps contained in Figure 16.

In Figure 7, the two DATA STEPS have been replaced with a single PROC SQL step. PROC
SQL permits you to delete or exclude records from a SAS data set without creating a new SAS
data set, using the DELETE FROM ‘Table’ statement.

In this example, since we avoid creating another new SAS data set, then the PROC DATASETS
step used to delete the data set in Figure 6 is no longer needed.

12

FILENAME MEDCOND "C:\SAS\SAS Temporary Files\medical cond tables.txt";

Proc S3 Config="C:\Users\OneDrive-DHHS\DataLayer\Cred\tks3.conf";
Get "/cdc-corefiles-datalayer-dataanalytics/medical cond tables.txt"
"C:\SAS\SAS Temporary Files\medical cond tables.txt";
Run;

Proc Import Datafile MEDCOND
Out=Medical Conditions
Dbms=DLM
REPLACE;
Delimiter=TAB;
Getnames=YES;
Datarow=2;

Run;
Proc Sql;
Delete from Medical Conditions
Where Person ID="IJKLMNOP54231534";
Quit;

Proc Freq data = Medical Conditions;
Tables file update date / nocum nopercent;
Run;

Figure 7. Modified SAS Code to download and Import Text File.

The new code in Figure 7 is more streamlined than the code in Figure 6. With fewer steps, there
are fewer passes through the data, which entails less processing or reading and writing of data.
Thus, the new code is a more efficient process which consumes less computing resources,
such as CPU, and Input/Output.

On another note, the new code contains fewer lines of code. With fewer lines of code, the
process is easier to read and understand. Most importantly, the code is easier to maintain.
Fewer lines of code mean less code which needs to be updated. By modifying and streamlining
the code we have made improvements to it in several respects.

ARCHIVE THE CODE

Eventually code will need to be retired and stored in an archive. There could be a multitude of
reasons why code needs to be stored in an archive. The code may be an old process which was
replaced by a newer improved process, and the code was taken out of production. Yet again,
maybe a new toolset or development language was used to perform the project or task. For
instance, SAS code was replaced with one of the open-source languages, such as python. It is
also possible that the project itself may have been completed or come to an end.

In archiving the code, it is a good idea to come up with some strategies which make sense. A
basic archive entails creating a folder or subdirectory on the server or hard-disk. Specifically,
there would be a project folder which is the root directory, and then subfolders created within it
for SAS code, output, logs, and external files. The screenshot in Figure 8 shows this kind of
basic configuration.

13

2| || = | Code Archive - X

Home Share View (2]
cut 2 New item ~ J open - [selecta
' w Capy path ‘ 7] Easy access =] Edit Select none
Pinto Quick Copy Paste Move Copy Delete Rename New Properties
P] Paste shorteut 1o o = folder = & History 5 Invert selection
Clipboard Organize Hew Open Select
<« v > ThisPC » OS(C) > SASFiles > Code » Code Archive v o Search Code Archi.
PFS6_TMP A [0 Name Date modified Type Size
Professional_Career Docume [& Project Program1 em Progr. DKB
Program Files [# Project_Program2 em Progr... 0KB
Program Files (x86) [#)] Project_Program3 SAS System Progr... OKB
~ || SASFiles
~ | Code
Code Archive
External Files
Logs
Output
Temp
Transit Schedules
Users
Windows
s USB Drive (E)
s Microsoft Office Click-to-Run
s USB Drive (E)
¥ Network
v
2 = = 532 PM
- 4l < — 4l o
iR @ L] B .L-‘ | Egg+) w @ J - < G @ L B82°F Mostlysunny -~ O1 § /7772022 (]

Figure 8. SAS code archive directory in Windows Explorer

As Figure 8 shows, within the code subdirectory, the archive would have a separate folder titled
‘Code Archive’. The SAS programs within the archive folder would all be specific to the
particular project the project folder in the root directory.

There are other more elaborate configurations for creating code archives. Instead of storing a
code archive within a project folder, a code archive directory could be created as the main folder
of the root directory. Then a set of project folders could be created within the code archive,
detailing specific projects. Alternately, a code archive could be created by compressing SAS
code files into a ZIP file.

Code archives don’t necessarily have to be created on a network server. Alternatively, archives
can be created and stored on external media, such as external drives, CD-ROMs or even
DVDs. Code generally doesn’t take up a considerable amount of space, but it might be worth
exploring this option if the code archive gets too large, and takes up substantial storage space.

14

CONCLUSION

The industry need for SAS consultants and contract SAS developers is ever present as
companies with open positions opt to select contract workers to fill their short-term needs. As
companies grow and expand, and as employees leave companies, they need SAS computing
professionals to come in with short notice to work with legacy SAS code for specific projects.
In this paper, | have outlined specific strategies for using existing SAS code written by other
programmers. From understanding code to modifying and streamlining code, I've tried to
cover specific tasks and aspects of programming a contract programmer will need to perform.

REFERENCES

Letourneau, Kent and Rhoads, Amy (2002) “You CAN Save Your Log and View It, Too: An
Improved Process for Automatically Saving the Contents of the Log and Output Windows”, in
Pharmasug 2002 Conference Proceedings,
https://www.lexjansen.com/pharmasug/2002/proceed/Coders/cc10.pdf

Carpenter, Arthur L. (2012) “Doing More with the SAS® Display Manager: From Editor to
ViewTable - Options and Tools You Should Know” in SAS Global Forum 2012 Conference
Proceedings. http://support.sas.com/resources/papers/proceedings12/151-2012.pdf

IMDB. “The Internship — Photo Gallery”. Accessed June 6, 2022. https://www.imdb.com/title/
tt2234155/

Rotten Tomatoes. The Internship — Movie Review. Accessed June 6, 2022.
https://www.rottentomatoes.com/m/the internship 2013

Variety. “Film Review — The Internship”. Accessed June 6, 2022. https://variety.com/2013/film/
reviews/film-review-the-internship-1200491025/

Wikipedia. “The Internship”. Accessed June 6, 2022. The Internship - Wikipedia

ACKNOWLEDGMENTS

The author would like to thank Matt Becker, PharmaSUG 2024 Operations Chair, Priscilla
Gathoni, PharmaSUG 2024 Academic Chair, Srivathsa Ravikiran and Gopal Rajagoral, E-
Posters Section Co-Chairs, and the PharmaSUG Executive Committee and Conference Team
for accepting my abstract and paper and for organizing this great conference.

15

https://www.lexjansen.com/pharmasug/2002/proceed/Coders/cc10.pdf
http://support.sas.com/resources/papers/proceedings12/151-2012.pdf
https://www.imdb.com/title/%20tt2234155/
https://www.imdb.com/title/%20tt2234155/
https://www.rottentomatoes.com/m/the_internship_2013
https://variety.com/2013/film/%20reviews/film-review-the-internship-1200491025/
https://variety.com/2013/film/%20reviews/film-review-the-internship-1200491025/
https://en.wikipedia.org/wiki/The_Internship

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jay lyengar

Data Systems Consultants LLC
datasyscon@gmail.com
https:/mwww.linkedin.com/in/datasysconsult/

Jay lyengar is Director of Data Systems Consultants LLC. He is a SAS consultant, trainer, and
SAS Certified Advanced Programmer. He’s been an invited speaker at several SAS user group
conferences (WIILSU, WCSUG, SESUG) and has presented papers and training seminars at
SAS Global Forum, Pharmaceutical SAS Users Group (PharmaSUG), and other regional and
local SAS User Group conferences (MWSUG, NESUG, WUSS, MISUG). He was co-leader and
organizer of the Chicago SAS Users Group (WCSUG) from 2015-19. He received his bachelor's
degree from Syracuse University in Public Policy and Economics, and his master's degree from
the American University.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

16

mailto:datasyscon@gmail.com

