
1 

PharmaSUG 2024 - Paper PO- 195 

A Simple Way to Make Adaptive Pages in Listings and Tables 
Yi Guo, Pfizer Inc.  

ABSTRACT  
Generating listings and tables is an essential skill for every statistical programmer. The task of optimizing 
the display of listings and tables can be a challenging one for new programmers. This is because the true 
length of a variable can vary significantly between patient records, consequently affecting the number of 
pages in the listing, file size, loading time, and empty space on a page. Similarly, in tables, the number of 
distinct values of a categorical variable can vary as a study matures, and summarizing such categorical 
variables without affecting the page break can also be challenging - ideally, we would want to summarize 
a categorical variable on the same page when space allows. In this paper, we provide a simple algorithm 
that calculates the maximum number of observations to display on each page with an aim to optimize the 
display, the number of pages, the file size, and the loading time. 

INTRODUCTION  
Pagination takes place before the PROC REPORT statement in SAS® programs. It is common practice to 
paginate the final work data set used in PROC REPORT by dividing the total number of observations 
(which we shall equate to _N_ for simplicity in this paper) by the maximum number of rows displayed per 
page (n), i.e., using ceil(_N_/n) in SAS®.  

However, this method does not work all the time. The lengths of data values may vary widely, resulting in 
a different number of rows displayed across pages. In these situations, even if we adjust the value of n to 
avoid unwanted page breaks, we still cannot optimize the display – that is, to display as many 
observations as possible on each page.  

Therefore, the number of observations or data records displayed per page must be flexible depending on 
the actual length of each data value and the maximum number of records that can fit on an individual 
page. In this paper, we provide a simple algorithm and demonstrate its implementation using SAS®. Not 
only can it automatically calculate number of observations per page, but it can also repaginate a listing or 
table to ensure proper page layout and numbering whenever the data or mock-up (i.e., shell or 
specification) is updated. It is also easily integrated into existing code for page numbering. In addition, this 
pagination method can allow variables with multiple categories or statistics to be fully displayed on a 
single page of the table, if space permits.  

In the following sections, we will illustrate common scenarios where creating adaptive pages is essential, 
elaborate on the algorithm, and demonstrate its implementation through both listing and table examples. 

COMMON SCENARIOS FOR CREATING ADAPTIVE PAGES  
Below are some examples for each scenario where making adaptive pages for listings or tables is 
beneficial. To better exemplify these situations, we used a publicly available TFL shell template. 

 
Scenario 1  
A few records are exceptionally long, while others are short. For example, a patient has a notably lengthy 
entry for medical indication in Concomitant Procedures (CP) listing. This indication will wrap to multiple 
lines. This situation is also likely to occur in Concomitant and Prior Medications (CM) and Medical History 
(MH) listings.  



 
 

2 

 
Figure 1a. Long data entry for indication in CP listing.  
 
Scenario 2 
Multiple variables are concatenated into a single column in listings, causing some of the newly combined 
data values to have considerable length. For instance, Adverse Event (AE), System Organ Class (SOC), 
and Preferred Term (PT) are often combined into a single column displayed in an AE listing.  

 
Figure 1b. Multiple variables are concatenated into one column in AE listing. 
 
In both scenario 1 and 2, the consequence of reducing the maximum number of observations displayed 
per page, i.e., value of n, will be an increase in the number of pages, with a majority of them containing 
excess blank space.  

 

Scenario 3 
For better readability, it is preferred to have all values of a categorical variable displayed or summarized 
on a same page when space allows. 

In Figure 1c, both variable Race ① and Height at Screening ② are very likely to stay on page 1 when 
there are only a few patients enrolled in this study. As more patients enrolled, if we do not manually set 
the page number for both variables in SAS® code, i.e., page 1 for Race ① and page 2 for Height at 

Screening ②, only partial statistics from variable Height at Screening ② will stay on page 1, with an 
unwanted page break in the middle (Figure 1d).  

 
 



 
 

3 

 
Figure 1c. The last variable is fully displayed on DM table page 1 when there are only a few 
patients enrolled.  

 

 
Figure 1d. Only partial statistics from the last variable are displayed on DM table page 1.   



 
 

4 

DETAILED ALGORITHM 
The algorithm will be implemented in three main steps.  
 
Step 1: After all data is processed per specification, we have the final input data set that is ready to be 
paginated. First, we count the number of rows for each observation that will be displayed in the output file, 
which in this paper we assume will be in RTF format. It is important to note that there is probably more 
than one variable in the data set that is considered in counting the rows. For example, in CM listing 
(Figure 2a), the total number of rows for the first observation is 4, and the total number of rows for the 
second observation is 3. Both variable Medication Name/Preferred Term/Chemical Substance and 
Indication should be considered in counting the rows.  
 
 

 
Figure 2a. Example listing that considers more than one variable in counting the rows. 
 
Step 2: If there is an extra blank row displayed between two observations in a listing layout or between 
two variables in a table layout, we should add an additional row corresponding to this in the counter. 
Besides, each table variable may have a headline for which an extra row should also be added for page 
break calculation. For example: 
 

1) + 1 row per observation when it skips one row per record.  
 

 
Figure 2b. Example listing that skips one row per observation. 
 
In this example, the total number of rows for the first observation in listing is 1+1=2. Same rule 
applies to the following observations.  

 
2) + 1 row per variable/group when it adds one blank row after each variable/group.  

+ 1 row per variable/group since each variable/group has a headline.  



 
 

5 

 

 
Figure 2c. Example table that has a headline and adds one blank row per observation 
group. 

 
In this example, the total number of rows for the first variable, i.e., Height at Screening (cm), in 
table is 1+6+1=8. Same rule applies to the rest of the variables.  

 
Step 3: Finally, we perform the cumulative sum starting from the first observation until it exceeds the 
maximum number of rows allowed per page, i.e., value of n. Once that point is reached, we move that 
observation to the next page, starting at the first row, and repeat the cumulative sum process. This cycle 
repeats continuously until the last observation is reached.  

MAKING ADAPTIVE PAGES IN LISTINGS USING SAS® 
The input data set mock_data we use for this listing example has 8 observations and 4 variables: 
USUBJID, COHORT, TXT1 and TXT2 (Figure 3, part ①). It has already been sorted by COHORT and 
USUBJID. The text values have already been processed to identify wrap points demarcated by the 
special delimiters “`/” a.  We assume the maximum number of rows displayed per page is 17. Only 
USUBJID, TXT1, and TXT2 will be displayed in the listing. 
 

 
Figure 3. Data set used for the listing example. 
 
 
a. The ways of text wrapping can be varied, and we will not discuss further in this paper. In REFERENCES section, 
we provide a method that creates output with automated page breaks, proposed by Gratt, Jeremy and Tella, Aditya 
(2021) for your reference.  
 
 
 
 
 
 
 
 



 
 

6 

According to the DETAILED ALGORITHM section, in the first step, we count the number of rows each 
observation will occupy in the RTF output.  
 
%let total_txt= 2; /* Total # of TXT variables in mock_data*/       
 
data mock_data1; 
       set mock_data; 
       array text [*] TXT1-TXT&total_txt.; 
       array rowc [*] row_line1-row_line&total_txt.; 
       do i = 1 to &total_txt.; 
              rowc[i] = 1+countc(text[i], '`'); /* # of rows per data value*/ 
       end; 
       max_row_line = max(of row_line1-row_line&total_txt.); 
       row_line_skip = max_row_line + 1; /* Skip one row per record */ 
       drop i; 
run; 
SAS® program 1: Calculating number of rows per observation for a listing.   
 
After executing the above program, we have 4 new variables generated: row_line1, row_line2, 
max_row_line and row_line_skip (Figure 3, part ②).  
 
Variable row_line1 and row_line2 summarize how many rows TXT1 and TXT2 will span per observation 
in the ultimate RTF file, respectively. max_row_line is the maximum value of row_line1 and row_line2.  
 
It is important to note that we add an additional one row to max_row_line since in the output file we add 
one blank row per observation according to the listing layout, i.e., row_line_skip = max_row_line +1.  
 
data mock_data2; 
       set mock_data1; 
       by COHORT USUBJID;       
       retain page_lines; 
 
       if _n_ = 1 then page_lines = 0; 
       page_lines + row_line_skip; /* Cumulative sum of rows */ 
  
       if _n_ = 1 then pageno = 1; /* Start at Page 1 by default */ 
       if page_lines > 17 then do; /* Break per 17 rows */ 
              page_lines = row_line_skip; 
              pageno + 1; 
       end; 
run; 
SAS® program 2: Numbering the page for each observation from listing.    
 
After running the above program, we obtain 2 new variables: page_lines and pageno. And pageno is the 
outcome variable for pagination.  
 
Variable page_lines is the cumulative sum of row_line_skip (Figure 3, part ③). Since the listing can only 
display no more than 17 rows per page, the first and the second observations will be shown on page 1 
(i.e., 4+10=14 <17), the third observation will be displayed on page 2 (i.e., 4+10+5=19 > 17).  One thing 
we should pay attention to is that the value of page_lines from the third observation is equal to the value 
of row_line_skip because it is the first record. Repeating this cycle until assigning page number to the last 
observation (Obs=8). 



 
 

7 

MAKING ADAPTIVE PAGES IN TABLES USING SAS® 
The input data set mock_data has 34 observations and 4 variables: order, TXT1, TXT2 and VAR1 (Figure 
4, part ①). We assume the maximum number of rows displayed per page is 21. Only TXT1, TXT2 and 
VAR1 will be displayed in the table. 
 
The way of counting the rows in tables is slightly different from listings. Instead of counting the number of 
rows for each observation, we need to know the total number of rows that will be displayed in the RTF file 
for each variable or observation group for further calculation.  
 
proc sql; 
    create table mock_data1 as 
    select order, TXT1, count(*) as max_row_line 
    from mock_data 
    group by order, TXT1; 
quit; 
 
data mock_data2; 
       set mock_data1; 
       by order; 
       retain page_lines 0 pageno 1; /* Start at Page 1 by default */ 
 
       row_line_skip = max_row_line + 1; /* Skip one row per variable */ 
       row_line_skip = row_line_skip + 1; /* Each variable has a headline */ 
  
       page_lines + row_line_skip; /* Cumulative sum of rows */ 
  
       if page_lines > 21 then do; /* Break per 21 rows*/ 
              page_lines = row_line_skip; 
              pageno + 1; 
       end; 
run; 

SAS® program 3: Calculating number of rows and numbering the page for each observation group 
(or variable) for a table.   
 
After executing the above program, we have the outcome data set mock_data2 that contains 4 new 
variables: max_row_line, row_line_skip, page_lines and pageno (Figure 4, part ②). Here, max_row_line 
summarizes the total number of categories or statistics from TXT2 for each unique value, e.g., Age, Sex, 
etc., from TXT1.  
 
Particularly, in this table example, row_line_skip = max_row_line+2. See highlights from SAS® program 3. 
Unlike the listing example, we add 2 additional rows instead of 1 for each group. This is because each 
group is preceded by a headline in the table layout.  
 



 
 

8 

 

 
Figure 4. Data sets used for the table example. 
 
 
 
 
 
 
 



 
 

9 

Finally, we merge the data set ② with data set ① by variables order and get the analysis outcome data 

set that is paginated and ready for PROC REPORT (Figure 4, ① and ③).  
 
data final; 
       merge mock_data mock_data2; 
       by order; 
run; 
SAS® program 4: Merging the data sets as the final step.  
 
During the PROC REPORT procedure, make sure we place the new variable pageno at the beginning of 
all variables in the COLUMN statement, then define the pageno using define pageno / noprint 
order;, and create a break line and start a new page using break after pageno/ page;.  

CONCLUSION 
This simple algorithm is designed to work after text wrapping and before the REPORT procedure. It 
calculates the maximum number of observations displayed on each page in a simple way. The amazing 
RETAIN statement from the corresponding SAS® code keeps the value of page numbers from the current 
iteration of the data step to the next. It enables the program to run efficiently and therefore shorten the 
total lines of the code. Also, our SAS® code can be easily integrated into any existing code. There are two 
things we should pay attention to during the page number calculation: 1) based on the layout design, two 
line breaks may be added between any two observations or between two variables to enhance 
readability; and 2) each variable may be preceded by a headline in the table layout. So, make sure to add 
the correct number of additional rows to get the page numbers.  
 

REFERENCES  
DMC TFL Shells Template from ClinicalTrials.gov. Accessed February 10, 2024. 
https://classic.clinicaltrials.gov/ProvidedDocs/71/NCT03053271/SAP_001.pdf 
 
Gratt, Jeremy and Tella, Aditya. (2021) “Re-pagination of ODS RTF Outputs to Automate Page Breaks 
and Minimize Splits Across Pages.” PharmaSUG 2021, Paper AP-101. 
 
SAS Institute Inc. 2016. SAS® 9.4 DATA Step Statements: Reference. Cary, 
NC: SAS Institute Inc. 
 
SAS Institute Inc. 2019. SAS® Certified Professional Prep Guide: Advanced Programming Using SAS® 
9.4. Cary, NC: SAS Institute Inc. 

ACKNOWLEDGEMENT   
The author would like to thank Kuldeep Sen and Michiel Hagendoorn for their feedback, support, and 
guidance. 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the author at: 
        Yi Guo 
        Pfizer Inc.  
        yi.guo@pfizer.com 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks of SAS Institute 
Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are 
trademarks of their respective companies.  

https://classic.clinicaltrials.gov/ProvidedDocs/71/NCT03053271/SAP_001.pdf
mailto:yi.guo@pfizer.com

	Abstract
	Introduction
	Common scenarios for creating adaptive pages
	Detailed Algorithm
	Making Adaptive pages in Listings using SAS®
	Making Adaptive pages in Tables using SAS®
	Conclusion
	References
	Acknowledgement
	Contact information

