

Reconstruction of Individual Patient Data (IPD) from Published Kaplan-Meier Curves Using Guyot's Algorithm: Step-by-Step Programming in R

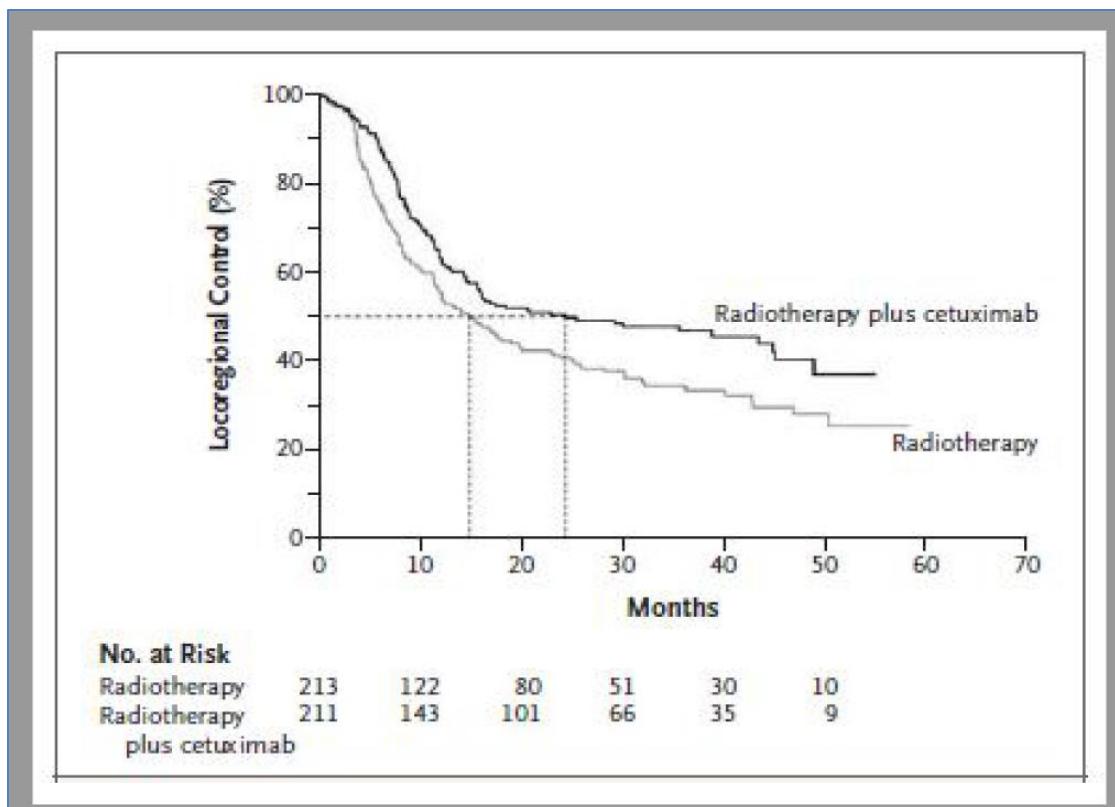
Ajay Gupta, Daiichi Sankyo
Natalie Dennis, Daiichi Sankyo

ABSTRACT

Secondary analysis may require the use of reconstructed patient-level data from published Kaplan-Meier (KM) curves to support a number of different objectives, including indirect treatment comparisons within the context of economic evaluations. Guyot (2012) developed an algorithm that reconstructs individual patient data (IPD) for time-to-event endpoints using published KM curves. This presentation will provide step-by-step instructions and a use case for executing the Guyot (2012) algorithm to reconstruct IPD from published KM curves in R.

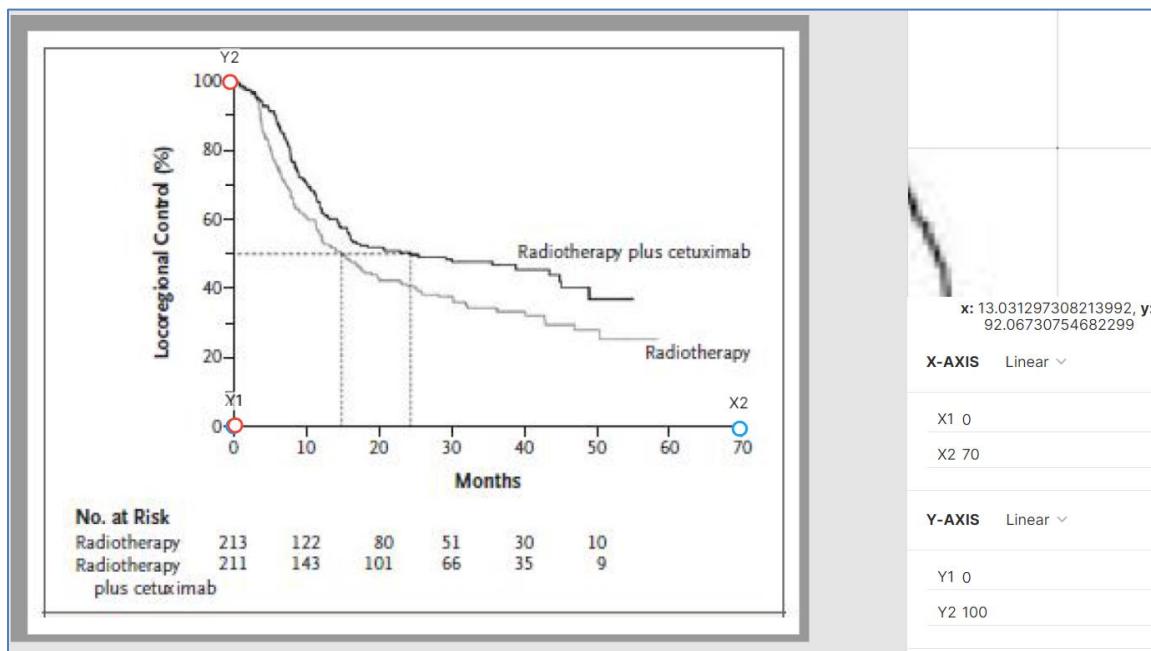
INTRODUCTION

R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics, and data analysis. The core R language is augmented by many extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software. It is licensed by the GNU Project and available under the GNU General Public License. It is written primarily in C, Fortran, and R itself. Precompiled executables are provided for various operating systems. As an interpreted language, R has a native command line interface. Moreover, multiple third-party graphical user interfaces are available, such as RStudio—an integrated development environment.

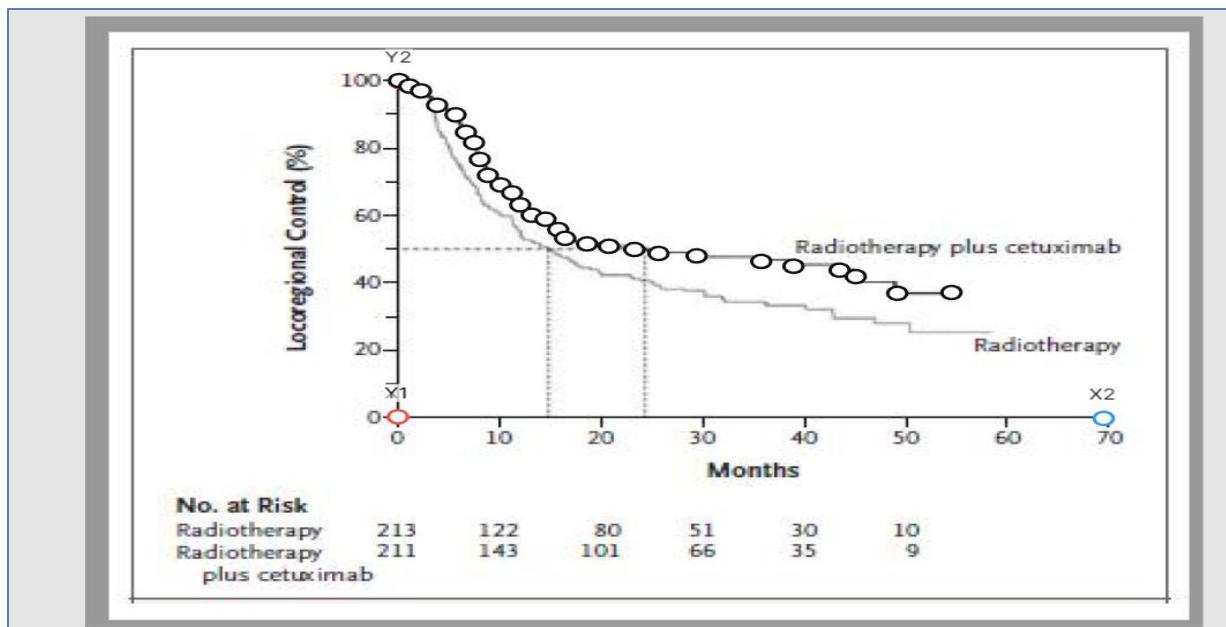

Secondary analysis may require the use of reconstructed patient-level data from published Kaplan-Meier (KM) curves to support a number of different objectives, including indirect treatment comparisons within the context of economic evaluations. Guyot (2012) developed an algorithm that reconstructs individual patient data (IPD) for time-to-event endpoints using published KM curves. This presentation will provide step-by-step instructions and a use case for executing the Guyot (2012) algorithm to reconstruct IPD from published KM curves in R.

STEPS TO RECONSTRUCT INDIVIDUAL PATIENT DATA (IPD) FROM PUBLISHED KM CURVE

1. Digitize Kaplan-Meier curves using published graph (using PlotDigitizer, GetData Graph Digitizer or other application)
2. Save the extracted survival data (digitized x- and y-coordinates) as a CSV/Excel file.
3. Create a file for the number of patients at risk, including the time points and the lower and upper intervals (based on the digitized Kaplan-Meier curves)
4. Identify the total number of events (if published)
5. Run Guyot's algorithm using R by importing extracted survival data and number of patients at risk files.


DIGITIZE KAPLAN-MEIER CURVES USING PUBLISHED GRAPH

1. Create image e.g., PNG, GIF from published KM Curve. See, example from published paper (Guyot 2012).

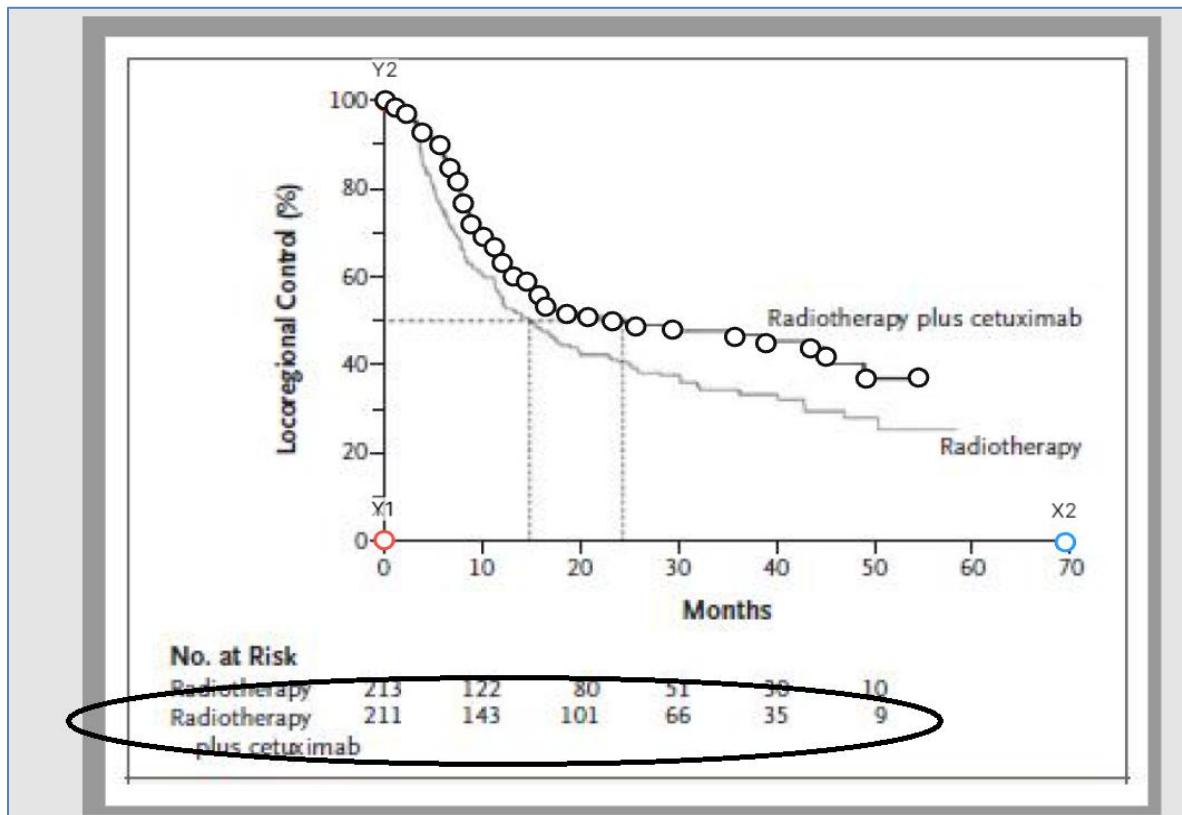

Display 1. Published KM Curve (Guyot 2012)

2. Import the file in plot digitizer user interface and select the range for X and Y axis.

Display 2. Published KM Curve (Guyot 2012) in Plot Digitizer

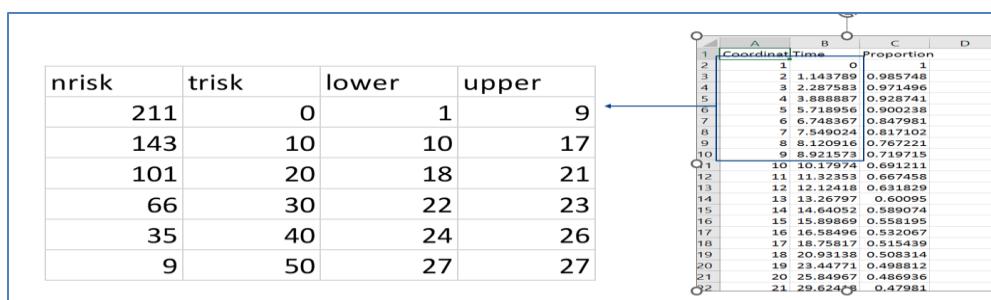
3. Mark the event times for the Kaplan-Meier curve to be digitized, i.e., at every point in which there is a step down in the Kaplan-Meier curve.

Display 3. Published KM Curve (Guyot 2012) with x and y manual markup.


4. After marking the relevant coordinates of the Kaplan-Meier curve, export the data into .csv file. Make sure to divide value on Y axis from 100 to get the proportion or mark the Y axis goes from 0 to 1 (even it goes to 100).

A	B	C	D
1	Coordinate	Time	Proportion
2	1	0	1
3	2	1.143789	0.985748
4	3	2.287583	0.971496
5	4	3.888887	0.928741
6	5	5.718956	0.900238
7	6	6.748367	0.847981
8	7	7.549024	0.817102
9	8	8.120916	0.767221
10	9	8.921573	0.719715
11	10	10.17974	0.691211
12	11	11.32353	0.667458
13	12	12.12418	0.631829
14	13	13.26797	0.60095
15	14	14.64052	0.589074
16	15	15.89869	0.558195
17	16	16.58496	0.532067
18	17	18.75817	0.515439
19	18	20.93138	0.508314
20	19	23.44771	0.498812
21	20	25.84967	0.486936
22	21	29.62418	0.47981

Display 4. CSV file from plot digitizer.


CREATE A FILE FOR THE NUMBER OF PATIENTS AT RISK:

See below graph and follow the instructions below to create the number of patients at risk file.

Display 5. Published KM Curve (Guyot 2012) showing number of patients at risk.

- Create a file for the number of patients at risk, including the time points and the lower and upper intervals.
- Nrisk: value provided in graph above.
- Trisk: time value corresponding to each Nrisk (every 10 months in this example)
- Lower and Upper: the coordinates in the digitize file corresponding to each time window (e.g., coordinates 1-9 fall between 0 and 10 months).

Display 6. Number of patients at risk file

RUN GUYOT'S ALGORITHM USING R:

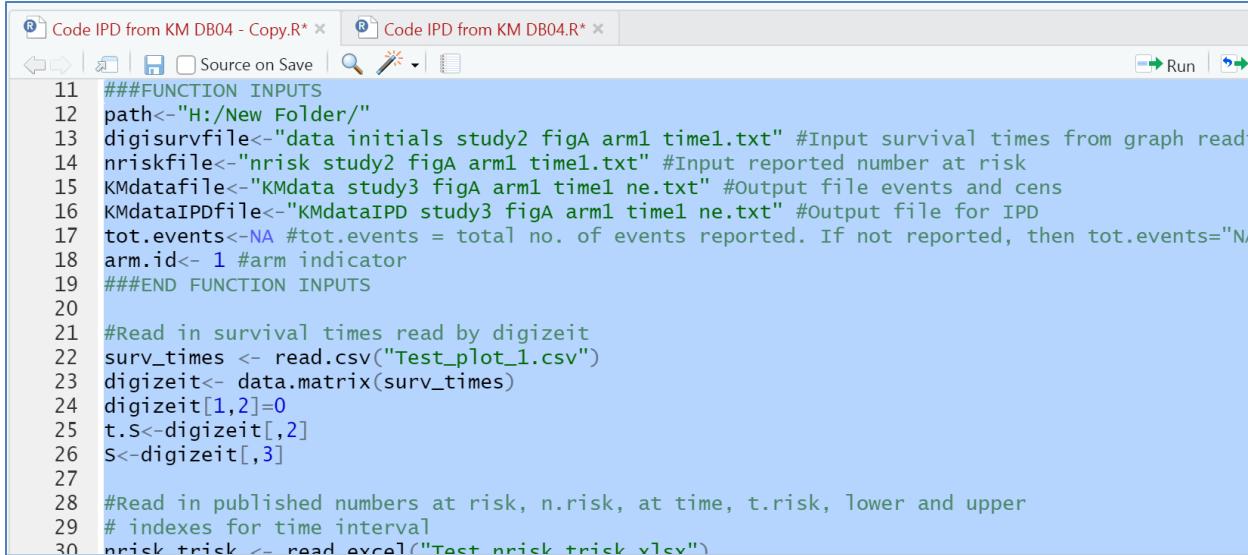
- Download R program containing Guyot's algorithm from following location.
[12874_2011_700_MOESM1_ESM.PDF \(springer.com\)](http://12874_2011_700_MOESM1_ESM.PDF) and update the R programs with respective values (shown in figure below with arrow)

```

#Algorithm to create a raw dataset from Digizelt readings from a Kaplan-Meier curve

library("MASS")
library("splines")
library("survival")

####FUNCTION INPUTS
path<-C:\IPHD\algorithm\reliability exercice\
digisurfname<-data initials study2 figA arm1 time1.txt"      #Input survival times from graph reading
nriskfile<-nrisk study2 figA arm1 time1.txt"                  #Input reported number at risk
KMdatafile<-KMdata study2 figA arm1 time1 ne.txt"            #Output file events and cens
KMdataIPDfile<-KMdataIPD study2 figA arm1 time1 ne.txt"       #Output file for IPD
tot.events<-NA"                                              #tot.events = total no. of events reported. If not reported, then tot.events="NA"
arm.id<-1 #arm indicator
####END FUNCTION INPUTS

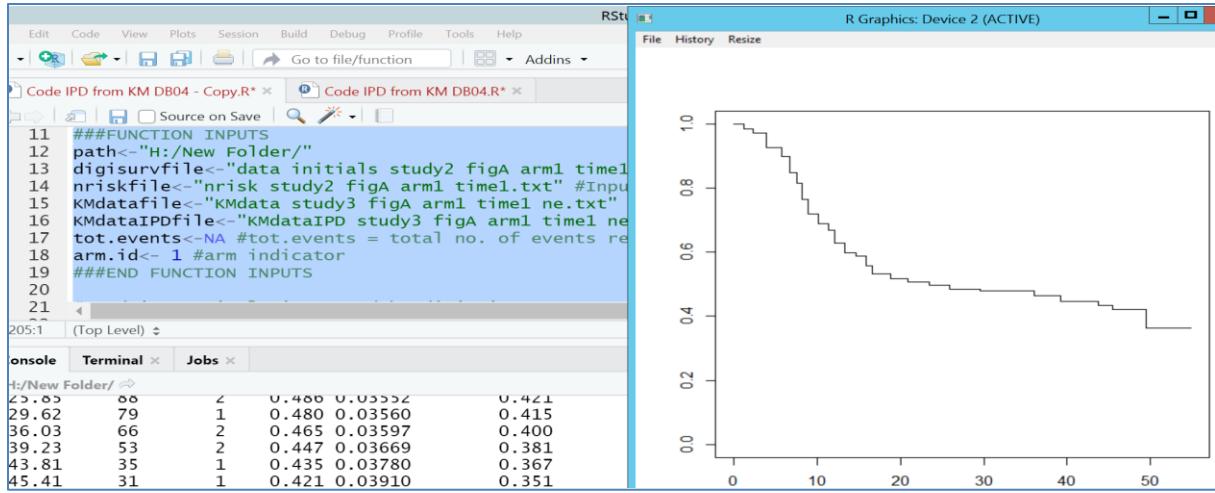

#Read in survival times read by digizelt
digizelt<- read.table(paste(path,digisurfname,sep=""),header=TRUE)
t.S<-digizelt[,2]
S<-digizelt[,3]

#Read in published numbers at risk, n.risk, at time, t.risk, lower and upper
# indexes for time interval
#pub.risk<-read.table(paste(path,nriskfile,sep=""),header=TRUE)
t.risk<-pub.risk[,2]
lower<-pub.risk[,3]
upper<-pub.risk[,4]
n.risk<-pub.risk[,5]
n.int<-length(n.risk)
n.t<- upper[n.int]

```

Display 7. R program from the Guyot (2012) publication

- Execute the R code in R studio:


```

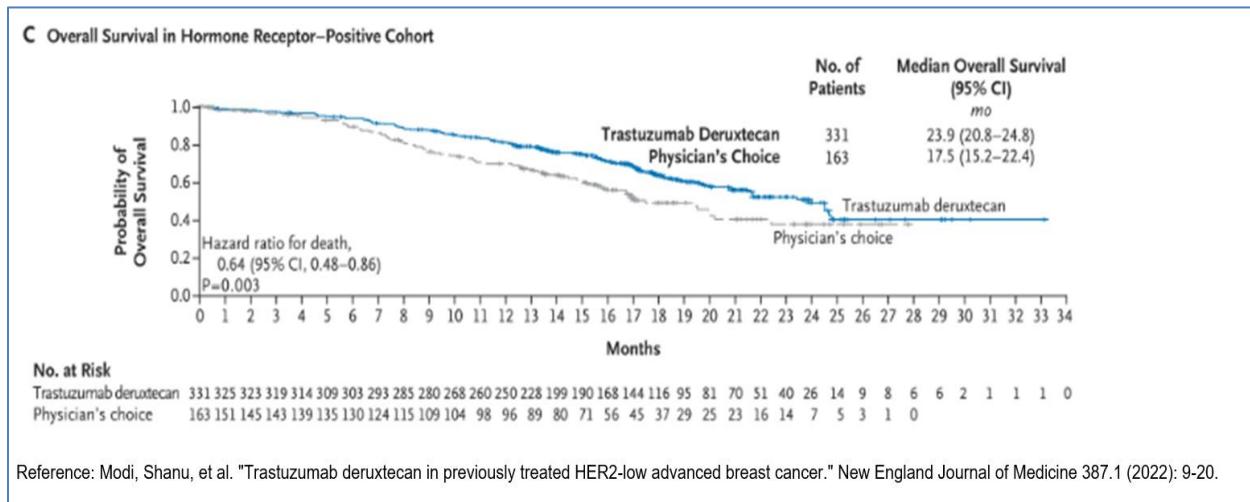
11 ####FUNCTION INPUTS
12 path<-H:/New Folder/
13 digisurfname<-data initials study2 figA arm1 time1.txt" #Input survival times from graph reading
14 nriskfile<-nrisk study2 figA arm1 time1.txt" #Input reported number at risk
15 KMdatafile<-KMdata study3 figA arm1 time1 ne.txt" #Output file events and cens
16 KMdataIPDfile<-KMdataIPD study3 figA arm1 time1 ne.txt" #Output file for IPD
17 tot.events<-NA #tot.events = total no. of events reported. If not reported, then tot.events="NA"
18 arm.id<- 1 #arm indicator
19 ####END FUNCTION INPUTS
20
21 #Read in survival times read by digizelt
22 surv_times <- read.csv("Test_plot_1.csv")
23 digizelt<- data.matrix(surv_times)
24 digizelt[1,2]=0
25 t.S<-digizelt[,2]
26 S<-digizelt[,3]
27
28 #Read in published numbers at risk, n.risk, at time, t.risk, lower and upper
29 # indexes for time interval
30 nrisk_trick <- read_excel("Test_nrisk_trick.xlsx")

```

Display 8. R program in R studio

- After execution of the programs, to ensure similarity and that the function accurately created pseudo-IPD based on the digitized Kaplan-Meier curve it is possible to recreate the KM curve to compare to the published one.

Display 9. Recreating the KM curve in R studio


- The programs also create a .txt file with pseudo-patient level data that can be used in secondary analysis.

File	Edit	Format	View	Help
[REDACTED]				
"", "Time", "Event", "Treatment"				
"1", 1.143789019, 1, 1				
"2", 1.143789019, 1, 1				
"3", 1.143789019, 1, 1				
"4", 2.287583274, 1, 1				
"5", 2.287583274, 1, 1				
"6", 2.287583274, 1, 1				
"7", 3.888886853, 1, 1				
"8", 3.888886853, 1, 1				
"9", 3.888886853, 1, 1				
"10", 3.888886853, 1, 1				
"11", 3.888886853, 1, 1				
"12", 3.888886853, 1, 1				
"13", 3.888886853, 1, 1				
"14", 3.888886853, 1, 1				
"15", 3.888886853, 1, 1				
"16", 5.718955566, 1, 1				
"17", 5.718955566, 1, 1				
"18", 5.718955566, 1, 1				
"19", 5.718955566, 1, 1				
"20", 5.718955566, 1, 1				
"21", 5.718955566, 1, 1				
"22", 6.748367254, 1, 1				
"23", 6.748367254, 1, 1				
"24", 6.748367254, 1, 1				
"25", 6.748367254, 1, 1				
"26", 6.748367254, 1, 1				
"27", 6.748367254, 1, 1				
"28", 6.748367254, 1, 1				
"29", 6.748367254, 1, 1				

Display 10. Individual Patient level data

MORE EXAMPLES

See below few more examples. Follow the steps above to recreate the IPD from KM curve.

Display 11. Published KM curve.

	A	B	C	
1	Coordinate	Time	Proportion	
2	1	0	1	
3	2	0.595812	0.993397	
4	3	1.167244	0.993397	
5	4	2.25816	0.993397	
6	5	2.959463	0.981056	
7	6	3.712714	0.972829	
8	7	4.439991	0.972829	
9	8	4.621811	0.960489	
10	9	5.11532	0.960489	
11	10	5.60883	0.952261	
12	11	5.7387	0.948148	
13	12	6.414028	0.944034	
14	13	6.595848	0.931694	
15	14	6.621823	0.923467	
16	15	7.245203	0.911126	

	A	B	C	D
	nrisk	trisk	lower	upper
0	331	0	1	3
1	323	2	4	6
2	314	4	7	11
3	303	6	12	18
4	285	8	19	24
5	268	10	25	30
6	250	12	31	35
7	199	14	36	40
8	168	16	41	46
9	116	18	47	53
10	81	20	54	57
11	51	22	58	59
12	26	24	60	62
13	9	26	63	63

Display 12. Markup file and Risk file for above KM curve

Display 13. Recreate KM curve using Guyot (2012) algorithm.

1.055	72	5	0.541	0.05401	0.477
1.713	68	2	0.525	0.03538	0.460
3.427	51	2	0.505	0.03687	0.437
3.713	44	1	0.493	0.03777	0.424
4.544	26	2	0.455	0.04336	0.378
4.674	24	2	0.417	0.04732	0.334

Display 14. Individual Patient level data

ALTERNATIVE APPROACH

- In 2021, Na Liu, Yanhong Zhou & J. Jack Lee proposed a modified, more flexible version of Guyot's algorithm to reconstruct IPD from published K-M curves and developed a R package and Shiny application. See below publication link for more detail. More details will be provided in future presentation.
 - [IPDfromKM: reconstruct individual patient data from published Kaplan-Meier survival curves | BMC Medical Research Methodology | Full Text \(biomedcentral.com\)](#)
- The alternative approach does not require a manual approach to digitizing curves using external software and relaxes some of the requirements for data input. It is therefore an all-in-one approach that reconstructs IPD directly from the KM curve.

CONCLUSION

Using the digitization software and Guyot (2012) algorithm we can efficiently reconstructs individual patient data (IPD) for time-to-event endpoints using published KM curves. This data can be especially useful in secondary analysis to support a number of different objectives, including indirect treatment comparisons within the context of economic evaluations.

REFERENCES

[R: The R Project for Statistical Computing \(r-project.org\)](#)

[Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves | BMC Medical Research Methodology | Full Text \(biomedcentral.com\)](#)

[PNS210 A Comparison of Graph Digitization Software for the Reconstruction of Published Kaplan Meier Curves - Value in Health \(valueinhealthjournal.com\)](#)

[PlotDigitizer Online App](#)

[IPDfromKM: reconstruct individual patient data from published Kaplan-Meier survival curves | BMC Medical Research Methodology | Full Text \(biomedcentral.com\)](#)

[R \(programming language\) - Wikipedia](#)

ACKNOWLEDGMENTS

Thanks to Antonio Lovatin, Véronique ROBERT and Giacomo Mordenti for their reviews and comments. Thanks to our family for their support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ajay Gupta, M.S.
Daiichi Sankyo, Inc
211 Mt Airy Rd
Basking Ridge, NJ 07920
Phone : (269) -873-1145
E-mail : Ajgupta@dsi.com,
ajaykailasgupta@gmail.com

Natalie Dennis
Daiichi Sankyo, Inc
France
Phone : +33 6 77 50 02 77
E-mail : natalie.dennis@daiichi-sankyo.eu

DISCLAIMER

The content of this paper are the works of the authors and do not necessarily represent the opinions, recommendations, or practices of Daiichi Sankyo.

Any brand and product names are trademarks of their respective companies.