PharmaSUG 2024 - Paper SD-179

Developing Web Apps in SAS Visual Analytics
Jim Box and Samiul Haque, SAS institute

ABSTRACT

SAS® Viya ® provides capabilities to develop web applications that let you use HTML pages to provide
inputs to programs that use SAS, R, and/or Python to create, display, and share analysis results across
your organization. The GUI uses standard HTML programming to collect the inputs and the system
leverages the existing scalability and security of your cloud environment.

INTRODUCTION

The SAS Job Execution Web Application is a way to deliver results of SAS code in an interactive manner
based on inputs captured from the end user. It's very similar to stored processes in capabilities, and it
has the same sort of interactive capabilities of some R Shiny ® applications. To make these work, you'll
need some SAS code (which can contain R and/or Python Code) and a little bit of HTML code for the
interface (which ChatGPT can be useful for writing).

EXAMPLE - SIMPLE RANDOMIZATION LIST CREATION

It's easier to see what we are doing if we start with an example. We wanted to make a job that would
prompt the user for some specifications for a simple randomization list, run some code to create the list,
then send the output tables to a Visual Analytics ® page that would have some imbedded visualizations
to do a QC of the process. As a bonus, we made one of those visualizations in R.

Enter Randomization Parameters

[

Number of Blocks:

|

Block Size: [2v]
Rand ID Start Number: (1001 |
Arm 1 Code: A]
Arm 1 Name: | Active
Arm 1 Assignments: [1v]
Arm 2 Code: P]
Arm 2 Name: | Placebo

| Create Randomization List \

Figure 1: Parameter Collection

The first part of the application is the parameter collection screen (Figure 1). This is a simple HTML file.
Each one of these values collected on the form will be passed to the SAS Job in the form of macro
variables that will be used in the SAS program that produces the results.

Generate New Randomization List Treatments by Block Assignment
Frequency
30

Randomization List Parameters
25
Parameter 4 Value

Block Size 5 20

Mumber of Blocks 25
D Starting Number 1001 "
Treatment 1 Code A i
Treatment 1 Name Active
Treatment 1 Ratio 3 05
Treatment 2 Code C oo
Treaiment 2 Name Centrel 12z 3 4 5 & 7 8 % 10 11 12 13 14 15 16 17 18 19 20 21 2 23 24 25
Treatment 2 Ratio 2
Block ID
Date/Time of Update 11MAR2024 17:59

Treatment Name
M Active W Control

User ID jimbax

Randomization List

Randomzation ID & Block ID Code
1001 1A Active
1002 1A Active 2 [
1003 1C Control B o
1004 1A Active
1005 1c Contral
1006 2 A Active
1007 2 A Active
1008 2 ¢ Contral
1009 2c Contral “ |
1010 2A Active ' ™)

Figure 2: VA Report of output

Figure 2 shows the output report. Clockwise from the upper left there’s a table of the parameters
captured from the input form, a bar chart showing the randomization breakdown by block, a bar chart with
the overall randomization counts, and then finally the actual randomization list. Let’s look under the hood
to see how we came up with this.

BUILDING THE JOB
DEVELOP THE SAS CODE

The first thing to do is to start with your actual SAS program and figure out what inputs you need to
execute. Figure 1 shows the input parameters we will need to create the randomization scheme.

Here’s the code we used to capture the parameters:

8 %let Blocks = & blocks;

9 %let size = & size;

10 glet t1 = & _t1;

11 tlet t2 = & t2;

12 tlet s1 = & s1;

13 %let s2 = %eval(&size - &sl);
14 %let nl & nl;

15 %let n2 & n2;

16 tlet rid = & rid;

17

18 %let st=%sysewvalf (&Sl +&32);

19 $let C1 = %sysevalf((&Sl*&size/&St));
20

Figure 3: Capturing parameters

To make it easier to differentiate between parameters passed by the Ul and the macro variables, we used
a leading underscore when setting up the parameter capture. Those values already come in as SAS
macro variables with the parameter names, so we didn’'t have to do this step, but it makes it easier to
track things of you do. It was also helpful to test the code by putting values in for the parameters.

The next section of code is just producing the randomization lists in the regular manner. Once the
randomization is done, we make two output datasets, one called RandList with the output of the
randomization and one called RandParm, which captures the values of the parameter.

CONFIGURE THE JOB

New Options View [Open Parameters
SAS program

Python program
4+ New parameter

Flow cision

a ic_mixed_SH_test.
uer
y ic_mixed_SH_test. ﬁ <

Cust t .
ustom step c_mixed_SH_test.

Quick import c_mixed.sas
Job > Definition
Task HTML form

More file types > Task prompt

Figure 4. Create a new job in SAS Studio Figure 5: Setting Parameters

To create a new job, in SAS studio select a Job Definition from the New menu (Figure 4). This will give
you the place to enter in your program. On the right-hand menu, you will see the Job Parameters icon
(Figure 4), which will open the parameters definitions. You will need to define some standard parameters
every time you run a job: an action parameter and an output type parameter. Figure 6 shows how we
have set them up.

Name:

Name:
_action _output_type
Field type: Field type:
Character v Character v
Default value: Default value:
form,wait,execute html
Required: @09) Required: @0)

Figure 6: Required Parameters

These parameters are set up to use a html form to capture the inputs for this job. We also set up an
additional parameter called _contextName so we can use a compute context that is always running, so
the job does not need to spin up a new SAS compute context every time.

From this point, we need to define a new parameter for everything we want in our form (figure 1). Finally,
we need to define the url for the job, and generate some html to show when the job runs.

The url definition will look something like this:
$let url= S%nrstr(/SASJobExecution/? program=/Public/RandomizationGeneration);

%let reload url="é&url.";

For the html, used a data step to push the html to the form window (Figure 7):

138 /* Send code that the project is done */

139

140 © data _null_;

141 file webout;

142 put '<!DOCTYPE html><html lang="en"> <head><title>Two-Arm Block Randomization</title><style type="text/css">
143 Bfont-face {

144 font-family:AvenirNext;

145 src:url("/SASJobExecution/images/AvenirNextforSAS.woff") format("woff");
146 } body, input, select {

147 font-family: AvenirNext,Helvetica,Arial,sans-serif;
148 text-rendering: optimizeLegibility;

149 -webkit-tap-highlight-color: rgba(0,0,0,0);

150 } .pointer {

151 cursor: pointer;

152 }u{

153 font-size: 15pt;

154 }</style></head> <body role="main"> <hl><center>';
155 put '

156 Randomization List Generated</hl>

157 i

158 put ' <script>

159 setTimeout (function(){

160 window.location.href =

161 '

162 put "%bguote(&reload url)";

163 put ';

164 }e 2500);</script> </html> ';

165 run;

Figure 7: HTML code returned after job executes

All this to put the message “Randomization List Generated” once the code runs (line 156).

CREATE THE INPUT FORM

»»
Associate a Form o]
Select a form to associate with the job @
definition.
() No embedded form
© HTML form

() Task prompt

() Existing form

Figure 8: Associating a Form

Next, we need to associate an html form (Figure 8). We’ll create a new one in the job definition itself; you
can see the other options available. To write the html, we called on ChatGPT to help; it's a pretty basic
form. Figure 9 shows the first section.

Program HTML form Preview

1
2 <!DOCTYPE html>
3 <html lang="en">
4
5 <body rele="main">
6 <center> <!--hi4>Enter Randomization Parameters</hl--> <form id="entry form" action="/SASJobExecution/":
7 <input type="hidden" name="_program" value="$PROGRAMS " />
8 <input type="hidden" name="_action" value="wait,execute”/>

9 <table> <tr>
10 <td>Number of Blocks: </td>
11 <td>
12 <input type="number" name="_blocks" min="1" max="90" step="1" required>
13 </td>
14 </tr>
15 <tr>
16 <td>Block Size: </td>
17 <td>
18 <select name="_size">
19 <option value="2">2</option>
20 <option value="3">3</option>
21 <option value="4">4</option>
22 <gption value="5">5</option>
23 <option value="6">6</option>
24 <option value="7">7</option>
25 <option value="8">8</option>
26 </select>
27 </td>
28 </tr>

Figure 9: Input form HTML

Line 12 shows us capturing the number of blocks into the _blocks parameter that we defined similar to
Figure 5, and line 18 is capturing the block size parameter _size from a pull-down selection as seen in
Figure 1.

To test your html, Run the job, and a Preview pane will appear where you can see the output (figure 10).

> Run ® B Show Log
L J

Program HTML form Preview

Number of Blocks: ﬁ

Block Size: 2v|

Rand ID Start Number: [1001 |

Arm 1 Code: A

Arm 1 Name: (Active |
Arm | Assignments: 1v]

Arm 2 Code: P

Arm 2 Name: Placebo |

| Create Randomization List

Figure 10: HTML preview

CREATE THE R OUTPUT

Creating the R output (figure 2, bottom right) wasn’t particularly difficult, as you can use ggplotin PROC
IML to make the graphic (Figure 11).

166

167 /* Create an R barplot for showing overall breakdown */
168 @ proc iml;

169 /* Convert SAS Table to R data frame */

170 call ExportDataSetToR("RandList", "df");

171

172 /* Submit R Code */

173 submit / R;

174 library(ggplot2)

175

176 png(file="/data/compute-landingzone/www/images/RBarRand.png",
177 width=600, height=350)

178

179 ggplot (df, aes(x=Tx)) +

180 geom_bar(aes(fill = factor(Txn))) +

181 geom_ text(aes(label =after stat(count)), stat = "count", vjust = 1.5, color = "black") +
182 theme (legend.title=element blank())

183

184 endsubmit;

185

186 quit;

Figure 11: PROC IML code to make a graphic

What's important here is where we saved the png output file. Line 176 shows where on the Viya server
we saved the output. Our Viya administrator set up a simple web server on the machine, this was
important to be able to display the graphic on the VA report. Because VA cannot automatically update an
imbedded graphic, to get this image to update on the report, we had to call it from an html file that would
continuously update (Figure 12). This html file (line 191) can be imbedded in the VA report.

190 & data null ;

191 file "/data/compute-landingzone/www/images/RBarRand.html";

192

193 put '<body> ':

194 put’ ';

195 put /;

196 put’ <script> ';

197 put’ // Get a reference to the image element ';

198 put’ const img = document.getElementById("RBarRand"); ";
199 put /;

200 put’ // Define a function to refresh the image ';

201 put’ function refreshImage() { ';

202 put' img.sre = "/images/RBarRand.png?" + new Date().getTime(); ';
203 put' Pt

204 put /;

205 put’ // Call the refreshImage function every 5 seconds ';
206 put' setInterval (refreshImage, 5000); ';

207 put’ </script> ';

208 put /:

209 put'</body> ';

210

211 run;

-~

Figure 12: HTML File that continuously updates

CREATE THE VA REPORT
We have everything we need for the VA report now:
1. HTML input form
2. Parameter Dataset
3. Randomization List dataset
4

HTML form linking to the R graphic

The Randomization List Parameters and Randomization List objects (Figure 2) are just basic VA list
tables — the only thing specific to this report is that in the options pane, we used the Periodically reload
object data selection and set it to 5 seconds (Figure 13). We did the same thing for the Treatments By
Block Assignment bar chart.

Options

’ List table - Randomzation ID 1 "

‘ 0 Filter

Alternative text: @

Enable selection in the viewers
[] Override system data limit

object

V‘ 5 ‘A Seconds

Figure 13: Setting object to automatically reload

The R bar chart is just a Web Content object, and all we had to do was point the URL to where we wrote
out the html file (Figure 12, line 191). This is where we needed help from the admin who set up the web
server on our Viya instance. We needed the location and a port number. The URL itself wound up
looking like this:

https://viyad.globalhls.sashg-d.openstack.sas.com:8443/images/RBarRand.html

Everything to the left of the colon is just the URL for our Viya instance; everything to the right is the port
number for the web service and the location we wrote the html file out to.

FINALIZING THE APP

Now there are two things left to do: setting up a page to call the application and linking to it from the VA
report. First, we need to make a new report tab, and set it to Pop-Up8 (Figure 14)

@ Enter Randomization Parameters Randomization Results @ Pac

Rename

Page type Basic
Delete page Hidden
Duplicate page v Pop-up

Figure 14: Creating a new Pop-up Page

This page will then just have a web content object on it, with the URL we defined earlier and use that in
the URL field:

https://viyad.globalhls.sashg-d.openstack.sas.com/SASJobExecution/

? program=%2FPublic%2FRandomizationGeneration

The last thing to do is to go onto our main VA report page and enter a text object, and go to Links .. Add
page link (Figure 15):

X
Add Page Link

Text: Generate New Randomization List

| | Set prompt bar values of target page

Target Pages

© Enter Randomization Parameters

OK | | Cancel

Figure 15: Adding a Page Link

This will add the hyperlink we see on the very top of figure 2 and will launch the parameter collection form
(figure 1).

CONCLUSION

The SAS Jobs Execution Web Application is an impressive way to create and share applications built on
SAS, R, and Python code. With code and HTML, you can build our interactive applications for your users.

ACKNOWLEDGMENTS

The authors would like to thank Wouter Van de Weghe, the SAS admin we would not be able to do
anything without.

RECOMMENDED READING

e SAS Documentation:
https://go.documentation.sas.com/doc/en/pgmsascdc/default/jobexecug/titlepage.htm

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Jim Box Samiul Haque
Jim.box@sas.com Samiul.Haque@sas.com
https://www.linkedin.com/in/jwbox/ https://www.linkedin.com/in/samiulhaque/

Any brand and product names are trademarks of their respective companies.

https://go.documentation.sas.com/doc/en/pgmsascdc/default/jobexecug/titlepage.htm
https://www.linkedin.com/in/jwbox/
https://www.linkedin.com/in/samiulhaque/

	Abstract
	Introduction
	Example – simple randomization list creation
	BUILDING THE JOB
	develop the sas code
	configure the job
	create the input form
	create the r output
	Create the VA report
	finalizing the app

	Conclusion
	Acknowledgments
	Recommended Reading
	Contact Information

