PharmaSUG 2024 - Paper SD-255

Define-XML Conversion: A General Approach on Content
Extraction Using Python
Danfeng Fu, MSD China, Shanghai, CN;
Dickson Wanjau, Merck & Co., Inc., Rahway, NJ, USA;
Ben Gao, MSD China, Shanghai, CN

ABSTRACT

Define-XML is a critical component of clinical trial data packages submitted to regulatory
agencies as part of a new drug/ biologics application. It provides a standardized way to
exchange the metadata for SDTM and ADaM datasets, which are used for analysis and
reporting. The rich information embedded in Define-XML is an ideal data source for
automating consistency checks against study datasets and documents, e.g. ADRG. SAS is a
natural choice for this work due to its widespread use in the pharmaceutical industry, but
there are challenges. First, the information needs to be extracted and converted into SAS
datasets, all of which are challenging, owing to XML language’s natural complexity with
nested elements and namespaces. The process is also cumbersome since one needs to
create XML map files for parsing the XML structure. Encoding would be another issue to
tackle, especially when the Define-XML contains hon-ASCII characters.

In this paper, we will introduce a simplified more straightforward approach using Python,
leveraging its extensive packages to extract contents from all types of XML schemas, not
limited to the CDISC ODM schema. This approach doesn’t require the creation of map files
and can better handle non-ASCII characters. It also offers a user-friendly method for
presenting a structural overview of a selected XML element (sub-elements, contents, and
attributes) and flexibility to extract desired contents without relying on a pre-defined map file
to create tabulated datasets or stylesheets to visualize the XML contents. This facilitates the
automation of cross-document consistency checks and potentially automates other
downstream processes, ultimately enhancing submission quality and compliance.

INTRODUCTION

XML files, especially Define-XML, are commonly utilized in clinical study submissions. This
paper explores the nature of XML and Define-XML, identifies the challenges encountered in
leveraging Define-XML as a rich data source for automation, and illustrates how we employed
Python to address these issues.

XML

Extensible Markup Language (XML) is a markup language that is designed to store and
transport data, making it a widely used format for data exchange and storage. XML uses a set
of rules to encode data in a format that is both human-readable and machine-readable.

In XML, data is enclosed within tags that define its structure and meaning. These tags are
created by the user, making XML an extensible language. XML documents can include
elements, attributes, text content, and other components. Elements are the building blocks of

XML documents and are enclosed within start and end tags. Attributes provide additional
information about the elements.

XML is platform-independent and language-neutral, making it suitable for data interchange
between different systems and programming languages. It is commonly used in web services,
as well as configuration files, data serialization, and representing structured data.

DEFINE-XML

Define-XML is a standard developed by the Clinical Data Interchange Standards Consortium
(CDISC). It serves as a metadata standard for defining and describing the structure of
datasets in clinical trials. The CDISC Operational Data Model (ODM) XML schema provides a
structured format for capturing and representing metadata about clinical trial datasets,
including study design, data collection, variables, and annotations. It serves as the foundation
for the Define-XML specification, allowing the standardized definition and documentation of
clinical trial data.

Advantages:

1. Standardization: Define-XML provides a standardized way to define and document the
structure of datasets, ensuring consistency and interoperability across different systems
and organizations.

2. Regulatory Compliance: It aids in regulatory submission package preparation by
providing a clear and structured representation of the clinical trial data, facilitating the
review process by different stakeholders. It promotes consistency and interoperability in
submission package components, making it compliant with internal and regulatory data
standards.

3. Improved Understanding: Define-XML provides comprehensive metadata including
variable definitions, relationships, and data structures. This helps reviewers understand
and interpret the clinical trial data better.

WHY PYTHON

Python is widely favored for extraction of information from XML files due to its robust library
support, especially with standard XML processing modules such as xml.dom and xml.sax
modules. Modules, such as xml.etree.ElementTree, xml.dom, xml.dom.minidom, xml.sax, are
part of the built-in Python standard packages and don’t require explicit installation by the
users. Robust XML-handling packages such as Ixml and data frame-building packages such
as Pandas provide more capabilities, thus simplifying the process of parsing and extracting
information from XML documents. Pandas’ XML API provides the read_xml() function, which
provides the ability to specify the parser such as Ixml and etree for retrieval of data. It also
provides us with the ability to use the Extensible Stylesheet Language Transformations
(XSLT) stylesheets. Further, it provides the “encoding” parameter to handle the encoding of a
particular XML document ensuring we can programmatically deduce the type of encoding in a
particular file, thus facilitating correct parsing of its contents. It also provides us the ability to
specify XML Path Language (XPath) expressions, which can be used to tailor our data-
retrieval from specific nodes, elements, and attributes in any XML file. XPath is a language

used to navigate and query XML documents. These XPath expressions offer a powerful way
to navigate through elements and attributes in an XML document.

The readability and simplicity of the Python language provide advantages for developers of all
skill levels. Further, Python's open-source nature, large community, and cross-platform
compatibility enhance its suitability for many programming tasks in today’s environment. New
and improved features are continually added.

CURRENT STATUS ON XML UTILIZATION AND PROCESSING

BUSINESS NEED FOR XML CONTENT EXTRACTION

XML contains structured and hierarchical data, which enables easy navigation, querying, and
extraction of its specific data elements. In the pharmaceutical industry, XML formats are
widely used in the clinical data lifecycle, i.e., data collection, mapping, analysis reporting, and
submission package components. There is a growing need to have automated tools to parse
the XML contents, extract desired information, and convert it into formats that can be readily
used with analysis & reporting (A&R) tools such as SAS and R for further processing. A
common use case is to validate shared content across critical submission deliverables such
as Define-XML, cSDRG, ADRG, aCRF, SDTM and ADaM datasets. Typical business use
cases suitable for XML content extraction may include:

Define-XML

Define-XML provides a standardized structure to represent metadata at dataset level, variable
level and value level governed by the ODM schema. These metadata are referenced among
multiple documents, which makes it critical to guarantee cross-document consistency. For
example, each ADaM dataset name, its label and structure are mentioned in multiples places
within ADRG, e.g., section 5.2 Analysis Datasets, its sub-sections (5.2.x) and section 7.1
ADaM Programs. The similar scenario applies to cSDRG where section 3.4 Subject
Domains documents each SDTM domain, and sub-sections 3.4.x is used to list QNAMSs in
the supplemental domain used in the downstream analysis and reporting. It is more efficient
and less error-prone to have automated tools to extract the needed information from Define-
XML to perform comprehensive cross-document checking instead of manual spot checks.

To enhance the overall quality of Define-XML, derivations/comments can be extracted and
processed programmatically to identify unclear or ambiguous language, or descriptions
containing programming statements not relevant for the reviewers. In addition, metadata can
be extracted from Define-XML to check that it is consistent with the submitted datasets.

SDTM aCRF Annotations

The PDF annotations in an SDTM annotated Case Report Form (aCRF) can be exported to a
file with .xfdf extension, which is an XML Forms Data Format (XFDF) generated with Adobe
Acrobat software. XFDF contains the form element descriptions and values, and the names
and values of text fields in the PDF form. The text fields can be imported to facilitate aCRF
annotation updates or other validation purposes, for example, CRF page number validation
against Define-XML.

Other Customized Uses

Excel spreadsheet is a popular format among all professions due to its ease of use and user-
friendly interface. XML files can be rendered in Excel if they adhere to the structure defined by
the Office Open XML schema. This schema consists of various XML elements and attributes,
which represent different aspects of the spreadsheet, such as worksheets, tables, formulas,
formatting, styles, and more. This seamless XML and Excel integration facilitates the storage
and exchange of structured data in a platform-independent way. At the same time, it allows
people with little or no XML knowledge to view and manipulate the files in their familiar
approach. In addition, Microsoft Word documents (.docx) are represented in XML format
following the Open XML standard.

XML is being used as the data format to upload clinical trial results onto public disclosure
databases such as ClinicalTrial.gov and EU Clinical Trials Register (EU CTR).

An automated tool is needed to analyze the XML structure and extract the desired information
to streamline downstream processing.

STATUS AND POTENTIAL PROBLEM

Since SAS is so widely used in the pharmaceutical industry, particularly in the analysis and
reporting area, processing XML files in SAS becomes a natural choice. The XML Mapper, a
tool in the SAS software suite, provides a way to understand the structure of the XML
document and map the XML elements to SAS variables. It allows users to visually navigate
through an XML document, create an XMLMap, and save the XMLMap to a file. XMLMap files
are used by the SAS XML library engine to read XML documents and save the pre-specified
information from XML into SAS datasets.

However, most statistical programmers supporting clinical trial A&R don’t use XML very often.
Understanding what an XML file is, as well as its structure and content, and how to read it, is
not an easy task for statistical programmers. Using the SAS XML Mapper and generating
XMLMap files requires a deep understanding of the XML format, including the tree structure
of XML, namespace definition and usage, and its various terminologies.

Creating a correct XMLMap file is also quite challenging. Searching for each element visually
is inefficient; manually dragging elements to establish data structure relationships is prone to
errors. Using an XMLMap as a template for different users within an organization works well
in general but leads to problems in some specific scenarios. Another likely scenario is that
most people often use the SAS English version (encoding=latinl), while the majority of XML
encodings are non-latin, which can easily lead to the failure to read some non-Latin

characters in XML.

PROPOSED SOLUTION

Allowing users to understand the content structure of the XML file from the beginning, rather
than relying on another XMLMap file and running a program to see the information, will help
them more easily obtain the content they need. If users can have unique elements and

attributes, the relative relationship between elements (such as parent elements and child
elements), and what content each type of element contains when they first get the XML, it will
be of great help to their understanding of the XML file and their ability to process it correctly in
later steps.

We leverage advantages of various packages mentioned in the Why Python Section, and

write functions using these packages to extract the information we want from the XML files.
These functions serve various purposes within XML processing, such as extracting essential
information from the XML file, and retrieving the complete content of the XML file,
encompassing elements, attributes, and other XML components. Certain functions facilitate
the visualization of structural relationships between different elements. Lastly, specific
functions are designed to fulfill particular requirements as needed.

We developed additional user-defined functions to address the specific needs of our
organization. The functions we designed are applicable to each individual XML file provided
by the user. They do not require any auxiliary files to read the content and display the relative
relationships within. These functions can not only be called within applications developed in
Python, but they can also be made into server-side APIs, so that they can be invoked from
other programming languages as needed.

FUNCTIONS AND DEMONSTRATIONS

XML BASIC INFORMATION

Upon receiving an XML document, it is helpful for the users to quickly have a high-level
overview of XML structure such as XML version, encoding, namespaces, summary of unique
elements and corresponding attributes. Building on top of the Python Ixml package, several
Python functions were defined to implement each specific functionality as listed below. This

basic information will be used in implementing other customized use cases.

XML Version, Encoding and Namespaces

The XML declaration is enclosed within <?xml ... ?> tags at the beginning of an XML
document (typically as the first line), which gives the version and encoding of the XML
document. The XML declaration helps software tools and systems accurately process and
interpret the XML data. The Python function that we developed uses the DoclInfo class in
Ixml.etree module to obtain the XML version, encoding, XML file path and root element
name. If DOCTYPE is declared with the XML, it can also be returned from the class property.

See Figure 1. Basic Info Extracted from Define-XML.

Name Value

root_name ODM
URL /User/Specified/File/Fath
encoding UTF-8

=ml_version 1.0

Figure 1. Basic Info Extracted from Define-XML

XML namespaces are primarily used to avoid naming conflicts when different vocabularies or
schemas are combined within a single XML document. Different organizations or working
groups can define their own vocabularies within their namespaces, so it is important to know
the specific namespaces associated with each element and attribute. For example, CDISC
Define-XML standard document defines the namespaces for the ODM element (root).

The Ixml package provides robust namespace support for XPath, e.g., XPath axes, predicates
and functions. With a single function call xpath(//namespace::*), all the namespaces in the
XML document can be retrieved and returned into a Python list for manipulation into other
data structures (See Figure 2. All Namespaces Extracted from Define-XML for a Pandas
DataFrame example).

Prefix Mamespace
am hitp: /e cdisc orginsfarmivl.0
def http: v edisc. org/neidefiv2 0
odm hitp- e cdisc. orgins/odmiv. 3
xlimk hittp: s w3 org/MM1 999/ xlink
xml hitp-fenerw w3 ong XML 998 /namespace

xsi hitpaitwense w3 org/2001XMLSchema-instance

] hitp: e w3 orgfM 999X SLMMransformn

Figure 2. All Namespaces Extracted from Define-XML

Unique Elements and Attributes

Elements are the fundamental components of an XML document's structure. An element can
contain other elements as its content, which creates a hierarchical and nested structure. A
summary table can be used to show an overview of the unique elements, element counts,
namespace, and attributes associated with each element. Directly inspecting and scrolling
through the raw XML file is time-consuming and challenging due to the lack of visualization
and the absence of styling and formatting.

The table in Figure 3. Define-XML’s Unique Elements and Its Namespaces and Attributes lists
the unique Element (Node Name) and the number of each element in the whole XML

document. The namespace for each element is split into 2 parts: the namespace prefix (Node
6

Prefix) and the URI (Node namespace). If any attributes are defined for an element, the
attribute names will be displayed in the last column, concatenated by a comma. This
summary table at the element level forms the basis for developing other features, offering the
capability to efficiently access information from multiple aspects. For example, if we seek
information about a specific Node Name, we can easily obtain a significant portion of the
essential details related to that Node Name from this table. Users are not required to
manually search for relevant information within the source XML file, saving them valuable
time and effort.

Node Name MNode Count MNode Prefix Node Namespace MNode Attribute Names
DM 1 hitip: /e cdisc.orginsfodmivi.3 CDMVersion, FileType, FileOID, CreationDateTim...
Study 1 hitip: e cdisc.orginsfodmivi.3 21D
GlobalVanables 1 hiip:ffwwne cdisc.orginsfodmiv.3
StudyMName 1 hiip: e cdisc.orginsfodmiv 3
StudyDescription 1 hitp:fwwew.cdisc.orgins/odmivi.3
ProtocolName 1 hitip: e cdisc.orginsfodmivi.3
MMetaDataVersion 1 hittp: e cdisc.org/insfodmivi.d CID, Mame, def:DefineVersion, def: StandardMame...
SupplementalDoc 1 def hitp2ffwww cdisc.orgins/defiv2 0
DocumentRef 2 def hitp:fwvew. cdisc.org/ns/defiv2.0 leaflD
ValueListDef 79 def hitpiiwvew cdisc.org/ns/defivZ. 0 QlD
IltemRef 2708 hitip: /e cdisc.orginsfodmivi.3 ItemQID, Crderiumber, Mandatory, MethodOID
WheraClauseRef 1038 def hitpfweew cdisc.orgins/defiv2 0 VheraClauseOID
WhereClauseDef 188 def hitp:ffwww cdisc.orgins/defiv2 0 1D
RangeCheck 189 hitp: v cdisc.org/nsfodmivi.3 SoftHard, def:liemOID, Comparator
CheckValue 204 hitp:fwwew.cdisc.orginsfodmivi.3
IemGroupDef 19 hitip: e cdisc.orginsfodmivi.d CID, Mame, Repeating, IsReferencelata, SASData
Description 4358 hitip: /e cdisc.orginsfodmivi.3
TranslatedText 4966 hiip:ffwwne.cdisc.orginsfodmivi.3
leaf 21 def hitp:fwvew. cdisc.org/ns/defiv2.0 1D, xdink:href
fitle 21 def hitp.fwvew cdisc.ong/ns/defiv2 0
ltemDef 2708 hitip: /e cdisc.orginsfodmivi.3 QID, Hame, DataType, Length, SASFieldName
Origin 2707 def hitpfweew cdisc.orgins/defiv2 0 Type
CodeLisiRef 1025 hiip: /v cdisc.org/nsfodmivi 3 CodelistOID
ValueLlistRef 79 def hitp.fwvew cdisc.ong/ns/defiv2 0 ValuelistOID
CodeList 143 hitip: v cdisc.org/nsfodmivi.3 OID, Name, DataType

Figure 3. Define-XML’s Unique Elements and Its Namespaces and Attributes

In addition to attributes associated with each unique element above, another table shown in
Figure 4. Unique Attributes in Define-XML is also provided to display the unique attributes and
their namespaces (prefix and name) within the whole document. This attribute table can be
cross-referenced if the namespace name (URI) information is needed from the element table.

Attribute Name Attribute Prefix Attribute Namespace

ArchivelocationlD def hitp:ffwww cdisc.orginsidefiv2.0
Class def hitp:/fwww.cdisc.ongins/defiv2.0
CodeListCID hitp-fiwnnw.cdisc.org/nsfodmivi.3
CodedValus hitp-fivwnw.cdisc.orgisfodmivi.3
CommentOID def hitp:/fwww.cdisc.org/nsidefiv2.0
Comparator hitp-fivwnw.cdisc.orgisfodmivi.3
Coniext hittp-iwvew.cdisc.org/nsfodmivi.3
CreationDateTime hitp-fivninw cdisc.org/nsfodmivi.3
DataType hittp-fivnew_cdisc.org/sfodmivi.3
DefineVWersion def hitp:ffwww.cdisc.orgins/defiv2.0
Dictionary hittp:-fivwew.cdisc.org/s/odmivi.3
DisplayFormat def hitp:/fwww cdisc.orging/defiv2 0
Extended\Value def hitp:ffwww cdisc.orgins/defiv2.0
FileCID hitp v cdisc.orgis/odmivi.3

FileType hittp-fiwnew. cdisc.org/ns/odmivl.3

[n} hitp v cdisc.orgis/odmivi.3
IsReferencelata hittp-fwwe cdisc. ongins/edmivl 3
ltemOID def hitp:/fwww.cdisc.ongins/defiv2.0

ltemCID hittp:-fivwenw.cdisc.org/sfodmivi.3
KeySequence hittp-fwniew. cdisc.org/nsfodmivi.3

Figure 4. Unique Attributes in Define-XML

XML ADVANCED INFORMATION

Basic XML information, including elements, attributes, and namespaces, provides standalone
insights about the XML file. However, the relationships between these components represent
more critical information within the XML file. Without understanding these dependencies, the
values remain incomplete, even with all the separate contents at hand.

Element — Element Relationship

Python's xml.etree.ElementTree module effectively identifies these relationships by iterating
through every element in the file. A detected element object encompasses all its child
elements, enabling the establishment of a parent-child relationship. As the initial step in
constructing the element dependency map, we loop through the top-level element until no
child elements are detected. This process results in a collection of all identified pairs, thereby
establishing the element dependency map. Figure 5. Unique Elements’ Relationship shows

the relationships of all elements from a define.xml file.

This dependency map will help users to establish the hierarchical structure of the whole XML
document. If they are interested in a specific element, they can navigate from the root
element to it by following along the lines. Within Figure 6. Unique Element’s and Unique
Attributes’ Relationship, the attribute elements (blue nodes) are also clearly represented by
yellow lines linking to each element node. Coupled with the customized XPath search
functionality, the node-attribute tables can be built for user selected nodes, not limited to the
root.

Qrigin CodelistRef

NemDef

Descrigfo
[temRef

Translgted Text

ProtocglName

ExterrglCodelList
Enumergtedlitem

Figure 5. Unique Elements’ Relationship

Element — Attribute Relationship

CodeLlistOID ODMVersion
FileType §

- Flle6i0
ItemDef s . &
tandardVersion Descrvpnon Oy
D Delme\.’ers on @ SouroeSys!emVersnon

SourceSystem

Stud

f\)

StudyDescription
GlooNVari 1ble».

Star\dardNarne udyNamP
Pmtoc{Name

ExternaiCodeList

—

TranslafedText
lang

P4
&6
- e

ArchivelocationID

Purpose
ti.".\l

Dictionary
&

g

DeJDde

4

Context
¥ N

a2
0

Figure 6. Unique Element’s and Unique Attributes’ Relationship

XML CUSTOMIZED CONTENTS

Utilizing the powerful functions of the above solutions, we can quickly extract specific content
from the specific XML used in our daily work. In this way, the work of extracting content from
XML will become more intuitive, user-friendly, and efficient. In contrast to the past, when
working with XML files felt like navigating a black box, now every user can confidently
manage XML content with a clear understanding of the information it contains. Below are two
types of extraction that can be customized:

Dynamic Extract & Content Preview

One of the features we developed is to assist users in defining their own XPath to extract
content in real time, thereby allowing them to browse the extracted content to determine if it
meets their needs. Defining XPath requires a certain understanding, but the functionality we
designed can minimize the user's requirements for XPath syntax understanding, allowing
them to focus more on the content they need.

For example, using the results from XML Basic Information, we can:

¢ help users automatically find the prefix or URI of the namespace corresponding to the
Node Name.

¢ help users confirm whether the content they need comes from the XML’s Node or
attribute.

Using the results from XML Advanced Information, we can:

. help users understand the hierarchical relationship between elements and attributes.

e check whether the XPath provided by the user is reasonable in terms of relative
relationships.

After users provide the correct XPath, the content is directly made available for preview.
Users can continue to update the XPath until they achieve the desired result.
Pre-Define XPath for Target Contents

Below, we have outlined three use cases that demonstrate how utilizing pre-defined XPath

can aid in extracting desired content.

Define-XML

As mentioned above, the created define.xml or submission package of each clinical trial need
to be validated. Extracting content programmatically improves efficiency.

It is implemented using extensions to the CDISC Operational Data Model (ODM) XML
schema. There are around 150 possible elements mentioned in ODM Specification? and 98
possible elements mentioned under ODM-Study Element. Tailoring each element and
attribute to gather all essential information during the extraction phase could entail a
considerable amount of manual effort and also carries a high risk of errors.

10

In our design, pre-specified XPath can be used to extract contents from both ADaM and
SDTM define.xml. For example, all contents for elements whose node name is “MethodDef”
or “ltemDef” or “ltemRef”, etc will be extracted into separate tables. See Figure 7. Data from
define.xml or eSUB Data Check for an example of the MethodDef table. These tables can be
subsequently saved to SAS datasets and to be used in SAS environment to implement
consistency checks with source data. The advantage of using XPath is that they are easier to
create and update compared to a template mapper file that covers the entire document.

I eSUB Checks v

Extract Define-XML | | +, Save Contents

MethodDef |

Codelist 0ID Name Type Description TranslatedTex~lang
CodelistRef AREEP Eo

MT.ADAE .ADURN Algorithm to dComputation

def:CommentDef

AE . AEDURDD
ltemGroupDef

AE . AEDURDD en
ExternalCodelist . .

MT .ADAE .AEGMIF Algorithm to dComputation

temDef Y if AEDECOD i
ltemRef Y if AEDECOD ien

MT.ADAE .AENDT Algorithm to dComputation
input(strip(AE
input(strip(AEen
MT .ADAE .AENDTM Algorithm to dComputation

input(strip(AE

Figure 7. Data from define.xml or eSUB Data Check
XML for Excel

The drawback of SAS output Excel files lacking the ability to apply styles in Excel can be
overcome by utilizing the ODS Tagsets.ExcelXP module in SAS. The difference is that the
former outputs an Excel file while the latter outputs an XML file (which utilizes the Microsoft
Office 2003 XML schema and can be opened directly in Microsoft Excel). In the case where
the content within an XML file needs to be read and utilized, this serves as another prime

example of the demand for XML file parsing among SAS users.

Implementing the extraction of specific parts from this type of XML, such as the content of a
specific sheet or column, can be achieved through various approaches in Python. For
example, in Pandas, by defining the XPath, you can extract all the content of a certain sheet
or a certain column in Excel. Green nodes in below figure (Figure 9. Element-Attribute
Relationships for XML Created by ODS Tagsets) shows elements’ relationships in an XML for

Excel.

Example of XPath to extract all contents in a worksheet element (under namespace “xmins”)
which has an attribute called “Name” (under namespace “ss”) and attribute’s value contains

string “EXTRT_missing”.
11

XPath ="//xmIns:Worksheet[contains(@ss:Name,'EXTRT_missing")]//*"

Figure 8. Missing EXTRT Sheet from XML shows target contents from a “EXTRT_missing”
worksheet.

A Missing EXTRT ~

® Extract Missing EXTRT
Toggle Columns

Column Row Index Data Type

filter data...

1 USUBIID

USUBIID String
2 EXSEQ

EXSEQ String
3 EXSPID

EXSPID String
4 EXTRT

EXTRT String
5 EXDOSE

EXDOSE String
6 EXDOSFRM

1/ 487 > »

Pandas approach: 101708 row, 21 columns Columns: ['FitToPage’, ‘Print’, "Zoom', "PageSetup’, ValidPrinterinfo’, ‘PaperSizeindex’, ‘Scale’, ‘FitWidth', ‘FitHeight', "HorizontalResolution’, 'VerticalResolution’,
‘StylelD', ‘Column, ‘Row’, *AutoFitWidth', ‘Width', ‘AutofitHeight, ‘Cell’, Index, ‘Data’, ‘Type']

Figure 8. Missing EXTRT Sheet from XML

FonlNdmL Llng_SFer
/i C olor 99
Size 2) \ Position
Bader T Width AutoFitWidth
- A LR (=

Weight
£ lurpn Index

Horizontal
= QlyxelD

Pattern
Interior P Type

i Data

AutoFitHeight

5

PYO!%C!@G v

FitHelght HorizontalResolution

Created

ValidPrinterinfo

VerticalResolution

erSizelndex

WorksheetOptions

Name PageS
o, Fit\pPage

\dth

Figure 9. Element-Attribute Relationships for XML Created by ODS Tagsets
Extraction of aCRF Page Numbers

The SDTM aCRF mappings are inherently PDF annotations that can be exported into the
XFDF (XML Forms Data Format). XFDF files are structured as an XML hierarchy containing

12

elements and attributes, following the XML standard syntax. The root element is typically
<xfdf>, and within it, various elements represent form fields, annotations, and other related
information. XFDF annotations contain full information to recreate the annotation in a PDF
document, including size and position on the page, color, and attached comments. For SDTM
aCRF, the page on which each annotation is put can be used to crosscheck the page
numbers in define.xml. The annotated texts are the content of XML element <p>, and the
page information is stored in the attribute named page inside element <freetext>, which is an
ancestor of element <p>. See below Figure 10 Element Relationships for XML from aCRF
XFDF file for the element structure of PDF annotations.

po

span

bod
contents-richtext
freetef/.

defaultappearance

defailtstyle

Figure 10 Element Relationships for XML from aCRF XFDF file

ids

With the unique attributes presented on the XML basic information table, we can search the
keyword “page” to locate the page attribute and its enclosing element. Then we can utilize the
node tree graph described in the XML content section to get a visual representation of the

relationships and hierarchies for the <freetext> element within the whole node tree.

DISCUSSION

1. XPath Understanding

XPath plays a crucial role in our approach, enabling several functionalities. While most of the
XPath syntax is straightforward for Python users, some aspects may not be as intuitive. One
feature of our solution is to assist users in defining their own XPath expressions for extracting
content of interest. Another feature allows for content extraction from pre-specified XPath,
enabling the saved content to be used for other purposes such as consistency checks for

submission deliverables or identifying “Missing EXTRT” worksheet, as previously mentioned.

13

Example XPath to extract all contents from multiple elements by a given node name.
XPath = 7/{namespace}.{localnodename}|//{namespace}:{localnodename}//*”

2. Namespaces for different levels

According to W3C XML specification, the scope of a namespace declaration extends from the
beginning of the start-tag in which it appears to the end of the corresponding end-tag,
excluding the scope of any inner declarations with the same name (default or prefixed). In this
case, inner declarations will overwrite the previous declarations. It is likely for users to
encounter XML files in which the same element name (local name) is bound to different
namespace names (URI) or the default namespace is bound to different URIs in nested
elements. The Ixml package supports XPath definition in below pattern so that those
ambiguities can be avoided.

XPath = "/*[local-name()='<node name>' and namespace-uri()='<uri>""

3. Extracted Content from Pandas Approach

When reading data from an XML file and writing it into a Pandas DataFrame, a record
typically represents an element or node in the XML file. Specifically, each row (or record)
usually corresponds to an element in the XML file, while each column corresponds to an
attribute or sub-element of that element. This may vary depending on the structure of the XML
file and the parsing method.

Although all content from XML can be extracted, the output format may not always meet the
requirements of the data format you need. For example, the content of a parent-level element
is not retained in the record output of a child-level element. Sometimes these contents are
related and require further processing to reflect this association. Therefore, you can add
processing in Python to transform this data into another format, or you can process the data
into the format you want after outputting it to another format.

CONCLUSION

The tool discussed here was developed as a proof of concept to showcase the benefits of
Python in clinical trials analysis and reporting (A&R). By using this tool, the need for auxiliary
files like XML map files to parse XML files will be eliminated, thereby simplifying the process.
This helps statistical programmers and A&R standards developers understand the XML files
they have at hand, quickly grasp the basic information of the XML, sort out the relationships
between various elements in the file, and have access to the relevant information that can be
used downstream. We believe this is crucial for better handling and utilizing the file. This tool
helps users understand the XML structure and decide for themselves what content to extract
and whether the extracted content is correct.

14

Ultimately, we will continue to strive to make these useful functions more accessible to a
wider audience, benefiting various developers and users in the end.

REFERENCES
1. "ODM v2.0 XML Schema". Available at https://github.com/cdisc-org/DataExchange-ODM

2. "ODM v2.0 Specification". Available at
https://wiki.cdisc.org/display/PUB/General+Elements

3. "Extensible Markup Language (XML) 1.0 (Fifth Edition)". Available at
https://www.w3.org/TR/xml/

4. "XML Forms Data Format Specification". Available at
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/XFDF _Spec 3.0 201

2.pdf

ACKNOWDEDGMENTS

We would like to thank Amy Gillespie, Susan Kramlik, Suhas Sanjee, Guowei Wu, Majdoub
Haloui, Jane Liao and Nicole Zhang for their review and valuable comments on this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Danfeng Fu

MSD China

+86 (21) 22118613
dan.feng.fu@merck.com

Dickson Wanjau

Merck & Co., Inc., Rahway, NJ, USA
+1 (610) 2910922
dickson.wanjau@merck.com

Ben Gao

MSD China

+86 (21) 22112893
peng.gao4@merck.com

15

https://github.com/cdisc-org/DataExchange-ODM
https://wiki.cdisc.org/display/PUB/General+Elements
https://www.w3.org/TR/xml/
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/XFDF_Spec_3.0_2012.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/XFDF_Spec_3.0_2012.pdf
mailto:dan.feng.fu@merck.com
mailto:dickson.wanjau@merck.com
mailto:peng.gao4@merck.com

