PharmaSUG 2024 - Paper SD- 266

A Tool for Automated Comparison of Core Variables Across ADaM
Specifications Files
Amy Zhang and Huei-Ling Chen, Merck & Co., Inc., Rahway, NJ, USA

ABSTRACT

A specifications file serves as fundamental guidance for creating CDISC Analysis Dataset Model (ADaM)
datasets. Dataset variables and their associated attributes in the specifications file have predefined
standards. In particular, the core attribute is essential; per CDISC IG, the Core column defines whether a
variable is required, conditionally required, or permissible. When preparing the ADaM specifications for a
study, the programmer frequently encounters the task of ensuring the core variable categorization follows
ADaMIG standards, company standards, or other protocols of the same compound or indication. To ease
this process, having a tool to quickly compare the list of core variables across standards or studies can
help facilitate ADaM dataset preparation. Storing these specifications in an Excel file is a common
approach. Some existing software tools provide spreadsheet comparisons, but the findings are often
overwhelming to digest. This simple SAS macro provides programmers with a quick glimpse into
differences in core variable categorizations across multiple Excel files based on user-specified ADaM
datasets and selection criteria. The results are summarized in an Excel file format, with each ADaM
dataset as its own spreadsheet presenting the list of core variables across standards or studies.

INTRODUCTION

Creating an accurate ADaM specifications file for a study is a critical part of programmers' workflow. This
file becomes the reference for the development of ADaM datasets and their variables. Specifications
provide essential information on variables' attributes, for example, their label, type, controlled terms, core,
derivation rules, etc, as seen in Figure 1. We focus on the core column: each ADaM variable is classified
into one of three 'core' categories - Required, Conditionally Required, and Permissible. A Required
variable must be included in the dataset; a Conditionally Required variable must be included if the
condition holds true; a Permissible variable does not need to be included. These 'core' categorizations are
globally defined for common variables in ADaMIG. There may be other categorizations to consider, like
company standards for a specific therapeutic area or standards from prior protocols of the same study
compound or indication. The programmer is responsible for verifying that each variable in the study is
correctly classified according to (potentially) multiple standards, and in particular, that all Required
variables are present in the study's specifications.

Table 3.2.2 ADSL Subject Demographics Variables

Variable Variable Label Type Codelist/ Core CDISC Notes

Name Controlled Terms

AGE Age Num Req DM.AGE. If analysis needs require a derived age that does not match DM.AGE, then AAGE must be
added

AGEU Age Units Char (AGEU) Reg DM.AGEU

AGEGRy Pooled Age Group y Char Perm | Character description of a grouping or pooling of the subject's age for analysis purposes. For example,

AGEGR1 might have values of "<18", "18-65", and ">65"; AGEGR2 might have values of "Less than 35 y
old” and "At least 35 y old".

AGEGRyN Pooled Age Group y (N) Num Perm Numeric representation of AGEGRy. Orders the grouping or poocling of subject age for analysis and
reporting. There must be a one-to-one relationship between AGEGRyN and AGEGRYy within a study.
AGEGRYN cannot be present unless AGEGRYy is also present. When AGEGRy and AGEGRyN are
present, then on a given record, either both must be populated or both must be null.

AAGE Analysis Age Num Cond | Age used for analysis that may be derived differently than DM.AGE. AAGE is required if age is calculated
differently than DM.AGE.

SEX Sex Char (SEX) Req DM.SEX

RACE Race Char (RACE) Req DM.RACE

RACEGRy Pooled Race Group y Char Perm | Character description of a grouping or pooling of the subject’s race for analysis purposes.

Figure 1: Snapshot of specifications for ADSL dataset from ADaMIG v1.3

Typically, specifications files are Excel files, in either xIsx or xlsm format like Figure 2. Specifications
following updated global standards from the most recent ADaMIG versions or therapeutic area standards
can be stored as unique template files for easy reference and use. Thus, a programmer can have multiple
template files that need to be compared against a study deliverable's specifications. Additionally, in many
instances, studies run across a long period of time spanning many months or years; when carrying
specifications over from deliverable to deliverable, programmers will need to check that the study’s
specifications are still up to date with global standards. Current software tools, ie. Synkronizer, perform

comparisons across entire Excel worksheets, but they may require long runtime, and their results are
often overwhelming, too detailed, and beyond what the programmer is looking for.

4 A B C D E F G H | J K L M

variabie W w w w - w W Codelist w w w W w core w Multiple
Variable Label Type |Length Format | Controlled | Origin Define Derivation Core Developer's Notes ° Period
Name Digits Variable
1 = 5 5 5 5 o| Terms . 5 5 5 S S| ony .
2 identifier Variables
3 [STUDVID _[Study identiner Char 12 Predecessor_[DM.STUDYID Req Y
4 USUBJD __|Unique Subject Identifier Char 30 Predecessor_|DM.USUBJD Req Y
SUBJD Subject Identifier for the Study [Char 70 Predecessor |DM SUBJD Req |Based on FDA TCG Guidance, DM SUBJID contains fhe primary
enrollment/screening number. This update will be only occur in
5 PDAM NG studies
6 STED Study Stte Identifier Char 70 Predecessor_|DM SITED Req
SITENUM [Study Site Number Char 70 Predecessor |Bring the SITENUM information from SUPPDM M-Req |Use SUPPDM.QVAL as SITENUM where SUPPDM.QNAM is
7 'SITENUM'. ASR Macros® ALL MACROS ¥
8 TNUNAM [Investigator Name Char % Predecessor | DMINVNAN W-Cond_|Req by standard report generating program

Figure 2: Global specifications from ADaMIG stored in an Excel file

This simple tool gives a targeted glimpse to help programmers confirm that their study's specifications
capture all Required variables and correct core categorizations based on available template
specifications. The user has flexibility to select which specification files to be used for comparison, the
ADaM datasets of interest, and the subsetting criteria. The tool summarizes the findings in an outputted
Excel file, allowing the user to identify and resolve any potential inaccuracies efficiently.

MACRO DESCRIPTION AND USER INPUTS

The macro, %compare0adamOspecs, takes six input parameters and outputs one final Excel file. The
macro is written as:

$macro compareladamOspecs (
adam_specs files=,
adam_ specs_ tags=,
sheetlist=,
column=,
condition=,
output excel file =

);

where

e adam_specs_files: pathnames to the locations where Excel specifications files are stored, entered as
a list separated by |

e adam_specs_tags: selected name for specifications’ source (ie. global, ta, study-protocol, etc),
entered as a list separated by |. The number of tags must match the number of specifications files
being used

o sheetlist: ADaM datasets of interest to be compared (ie. ADSL, ADAE, etc), entered as a list
separated by |. Individual Excel worksheets within the specifications file should be named according
to the ADaM dataset names

e column: column of interest from specifications file (ie. Core)
e condition: subsetting condition of interest (ie. (where not missing(Core)))
e output_excel file: pathname to the location where comparison summary will be exported

An example macro call will look like:

scompareladamOspecs (

adam specs files=%str(/path/Global-template-specs.xlsm|
/path/TA-template-specs.xlsm|
/path/Study-specs.xlsm),

adam_specs_tags=%str(global|ta|study),

sheetlist=%str (adsl|adaeladrs),

column=%str (core),

condition=%str (where core in ("Reqg", "M-Req", "O-Req")),

output excel file =%str(/path/Output-results.xlsx)
)

MACRO PROGRAM FLOW

This macro follows 3 main steps:

1. Read in Excel specifications files as SAS datasets

From the specifications files, the macro has a check to convert the file from xlsm to xIsx if needed:

%$1f Supcase (&extension)=XLSM %then %do;

$if "&sysscp" = "WIN" S$then %$let cmd = copy &file path.\&file name.
&file path.\xxxxxx .xlsx /b ;

$else %let cmd = cp &file path./&file name. &file path./xxxxxx .xlsx;
%end;

The macro parses through each worksheet (an ADaM dataset’s specifications) of each file (global specs,
TA-specific specs, study’s specs, etc) via a nested do-loop:

slet filenum=%eval ($sysfunc (countc(&adam specs files, '|['))+1);
zlet tagnum=%eval ($ssysfunc(countc (&adam_specs_tags, '|'))+1);
$do i=1 %to &filenum;

%let sheetnum = %eval (%$sysfunc(countc (&sheetlist., '[|'))+1);

%do j=1 %to &sheetnum;

Each worksheet gets read in as a SAS dataset using the PROC IMPORT procedure:

proc import out=&sheet. &tag.
datafile="&file."

dbms=xlsx replace;
sheet="&sheet.";
getnames=YES;

run;

The SAS dataset is subsetted based on the user-entered condition. The macro also includes a check that
the ADaM datasets have existing specifications within each file; it continues to run via an empty dataset
placeholder if the ADaM dataset specifications are missing from the specifications file(s):

%1f %sysfunc(exist (&sheet. &tag.)) Sthen %do;
data &sheet. &tag;
set &sheet. &tag (rename=(Variable Name=varnam)) ;
&condition.;

run;
%end;
%else %do;
data &sheet. &tag.;
dataset="'";
Variable Name='";
&tag.="'";
run;
%end;

2. Perform comparison between specifications within each ADaM dataset

The macro combines data from the specifications datasets to create a grouped comparison dataset for
each ADaM dataset. Using another nested do-loop, the SET statement sets the first specifications
dataset and the subsequent MERGE statement automatically joins those with the same ADaM dataset.

A flag variable is also created during the loop to make any differences more readily identifiable. Once a
difference is spotted between any two specifications, the flag gets assigned the value ‘Y’. To carry out this
task, there is an initial comparison for the first specifications with the second specifications when merging
the datasets. If the value between the two datasets are different, it assigns Y’ to a flag variable;
otherwise, the flag has a null value, meaning that the values are the same. The loop continues to
compare the second specifications with the third specifications. If the values between the first and second
specifications were the same, but the values between the second and third specifications are different, it
now assigns ‘Y’ to the flag variable. This process continues until all specifications are reviewed:

%do j=1 %to &sheetnum;
%let sheet=%sysfunc(scan(&sheetlist., &j, 'I|"));

%do i=1 %to &tagnum;
%let tag=%sysfunc(scan(&adam_specs_tags, &i, '[|"));
$1if &i=1 and %sysfunc(exist (&sheet. &tag.)) Sthen %do;
data compare é&sheet.;
set &sheet. &tag.;
original=&tag.;

origflag="";
run;
$end;
selse %if &i~=1 and %sysfunc(exist (&sheet. &tag.)) S%then %do;
data compare é&sheet.;
merge compare é&sheet. &sheet. &tag.;
by dataset Variable Name;
if missing(Variable Name) then delete;
if original ne &tag. then flag ='Y';
if origflag='Y' or (origflag=' ' and original
ne &tag.) then flag ='Y';
origflag = flag ;
run;
$end;

%end;
%end;

Figure 3 shows an example output of the comparison loops for the ADSL dataset using three
specifications files. If the values are the same across all specifications, the flag variable remains empty.
However, if any of the values are different or missing, the flag gets populated with Y’.

Table: | WORK.COMPARE_ADSL = View: Columnnames = B 3 B Yriter: (none)

L}

Columns © Totalrows: 59 Total columns: 6 M= 4 Rows1-59 = =
Select all dataset Variable_Name GLOBAL TA STUDY FLAG
4 dataset 1 ADSL ACTARM M-Req M-Req M-Req
A Variable_Name 2 ADSL ADTHFL O-Req O-Reqg Y
A GLOBAL 3 ADSL AGE Req Req Req

4 ADSL AGEGR1 M-R M-R M-R
ATA eq eq eq

5 ADSL AGEGR1N M-Req M-Req M-Req
A STUDY

6 ADSL AGEU Req Req Req
O FLAG

i ADSL ARM Req Req Req

8 ADSL ASEX O-Req O-Req Y

9 ADSL COUNTRY M-Req M-Req M-Req

Figure 3: SAS dataset generated by macro for one ADaM dataset’s comparison

3. Export results to one Excel file

The macro creates one xlsx file at the user-specified path. Inside the xIsx file, each ADaM dataset has its
own worksheet:

%1f "&output excel file." ne "" %then %do;
libname final xlsx "&output excel file.";
proc datasets;

copy in=work out=final;
select compare:;
run;
quit;
libname final clear;
%end;

As shown in Figure 4, the individual worksheet tabs are labeled with the ADaM dataset and its associated
comparison. The worksheet lists the ADaM dataset where the variable came from (Column A), the
variable name (Column B), the ‘core’ categorization values from each respective specification file source
(Columns C-E), and a flag to easily display which variables have different values between the
specification files (Column F).

A A B C D E F
1 |dataset Variable_Name GLOBAL TA STUDY FLAG
2 ADSL ACTARM M-Req M-Req M-Req

3 |ADSL ADTHFL 0-Req 0-Req Y
4 ADSL AGE Req Req Req

5 ADSL AGEGR1 M-Req M-Req M-Req

6 ADSL AGEGRIN M-Req M-Req M-Req

7 ADSL AGEU Req Req Req

8 ADSL ARM Req Req Req

9 ADSL ASEX 0-Req 0-Req Y
10 ADSL COUNTRY M-Req M-Req M-Req

11 ADSL COUNTRYN Req Y
12 ADSL DCEFURS 0-Req Y
13 ADSL DCTADY O-Req Y
14 ADSL DCTDT O-Req Y
15 ADSL DCTFL 0-Req Y

COMPARE_ADAE | COMPARE_ADRS | COMPARE_ADSL ©)

Figure 4: Excel file generated by macro

CONCLUSION

Comparing information across multiple ADaM specification files can be tedious and time-consuming. This
paper presents a solution that automates the comparison process based on what information the user
wants to see and the entered selection criteria. The detected differences are efficiently summarized in
one file, allowing for quick comprehension of results in a glance.

Because this macro is simple to digest and understand, it will be easy to adapt according to each
company’s setup, for example, modifying the file read-in portion of the code to accommodate SAS
datasets if specifications are stored in SAS datasets instead of Excel files. While this macro performs a
straightforward function, its’ user flexibility allows for expansions to other use cases. The user can change
the subsetting condition or select a different column to compare, like comparing the variables’ labels
across the available specifications files. Specifications are also needed and created for SDTM datasets,
and the user can use SDTM specification files as the inputs into this tool, given that the SDTM
specifications follow the same column structure and format as ADaM specifications.

One potential area of difficulty arises when the user is interested in comparing variables’ derivation rules
across the specifications files. Derivations extend to long lines of text, and rules that instruct the

programmer to perform the same derivation can be written in different ways. Because this tool can only
handle exact matches, results generated under this circumstance may be misleading. Thus, future
expansion of this macro requires the integration of Al or machine learning algorithms to correctly identify
differences between derivation rules.

REFERENCES
CDISC ADaM Guidelines

e ADaM | CDISC

SAS Macro References

e SAS Macro Language 1 Essentials

ACKNOWLEDGMENTS

The authors would like to thank the management teams at Merck & Co., Inc., Rahway, NJ, USA for their
advice on this paper/presentation.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Amy Zhang
Merck & Co., Inc., Rahway, NJ, USA
E-mail: amy.zhang2@merck.com

Huei-Ling Chen
Merck & Co., Inc., Rahway, NJ, USA
E-mail: huei-ling _chen@merck.com

Any brand and product names are trademarks of their respective companies.

https://www.cdisc.org/standards/foundational/adam
https://learn.sas.com/pluginfile.php/79133/mod_resource/content/1/LWMAC1_003_SAS%20Macro%20Language.pdf
mailto:amy.zhang2@merck.com
mailto:huei-ling_chen@merck.com

