PharmaSUG 2024 - Paper DV- 356

Standardizing Validation Data Sets (VALDS) as matrices indexed by Page,
Section, Row, and Columns (PSRC) to improve Validation and output
creation and revisions.

Kevin R. Viel, Ph.D., Navitas Data Sciences and Histonis, Inc.

ABSTRACT

Table and listing (TL) shells are blueprints specifying the dimensions of the output: PAGES, SECTIONS,
ROWS, and COLUMNS (PSRC), their orders, and the precision of the values in the cells indexed by
those dimensions. Values may be a composite such as Mean (SD). Viel introduced the Validation Data
Set (VALDS), a standardization data set derived and used as input to create output (RTF/PDF).
Importantly, the VALDS formalizes the structure and format of such data sets, standardizing 1) TL
programs of various types and projects, 2) their Validation, and 3) the manual (spot) checking of the
output against the VALDS. The programmer (independently) derives a value and inserts or “pigeon
holes” it into its respective cell in the VALDS. For instance, a derived value may be assigned to the cell
indexed as COLUMN 3 of PAGE 2, SECTION 3, and ROW 1 of the TL. The goal of this paper is to 1)
introduce the creation of an analytic data set (ADS) so that at most only one SAS System® FREQ and
one MEANS procedure is typically required for the entire program, to index the (composite) value using
its PAGE, SECTION, ROW, and COLUMN labels to place it in its appropriate cell of the VALDS matrix,
and to demonstrate an efficient way to populate default values, including for dimensions specified by the
shell, but absent in the data. Lastly, this paper demonstrates the ease of making major revisions to the
output with extremely minimal changes to the TL programs.

INTRODUCTION

When deriving the datum of composite of data to produce a table or listing, the programmer places the
data based on variables, perhaps guided by a shell. Technically, the term “derivation” should apply only
to tables since listing should be a presentation of a data set subset by observations and/or variables. For
instance, a flag variable such as SAFFL might define a page. Another example of a page might be a
PARAM (LBTEST) in ADLB. A section might be a characteristic such as AGE or RACE, but it may be a
VISIT. A row might be a value in that sections such as “ASIAN” or “Mean (SD)”, the latter being a
composite of two derived values.

Whether or not the shell is used as blueprint, the table (listing) can be viewed as a matrix with
numerous cells. The indices of the cells related to the dimensions: PAGE, SECTION, ROW, and
COLUMN, which have associated numbers. Such a structure can be used to the advantage of a
programmer to standardize programs. The burden of the programmer is usually to derive the datum or
composite data that appears in the cell. Using the “labels” and data sets that assign the indices
(numbers) to a cell, reduces the burden on the programmer to place or “pigeon hole” the derived values
into their appropriate cells. For example, one might say PAGE = “AST”, SECTION = “VISIT 24", ROW =
“Mean (SD)” and COLUMN = “Group 2 (N = 47)". Using the shell, one might associate those labels with
numbers such as PAGE_ORDER_1 =3, SECTION_ORDER_1 =12, ROW_ORDER_1 = 3, and
COLUMN = 2. While the first might be intuitive to the anyone, the second allows the programmer to use
tools such as Hashes (associative arrays) and Arrays, while focusing on other issues like deriving the
data.

This paper demonstrates this approach, which dovetails well into the VALidation Data Set
(VALDS) approach presented previously2. In the near future, aspects of the shell, like the number of
columns, order of pages, sections, and rows, and groups into columns as well as font-family and size and
precision should be abstracted directly from the shell. Further automation would include the dimensions
of the cells (height and width), which should allow the shell author to visualize these aspects at creation,
allowing adjustments, such as the reduction of the number of columns or rows per page before the final
output arrives.

SIMULATED ADSL

The following code generates a simulated ADSL with a seed that creates a repeatable data set (Table 1):

%let macvar = usubjid = catx("-" %str(,) studyid %str(,) siteid %str(,) put(subjidn %str(,)
age = rand("INTEGER" %str(,) 18 %str(,) 85) S%str(;)
bmibl = rand("INTEGER" %str(,) 18 %str(,) 85) + round(rand("UNIFORM"
race = _r(rand("INTEGER" %str(,) 1 %str(,) 3)) S%str(;)
saffl = ifc(mod(subjidn %str(,) 10) = 0 %str(,) "N" S%str(,) "Y") Sstr(;)
ittfl = ifc(mod(subjidn %str(,) 5) = 0 %str(,) "N" %str(,) "Y") Sstr(;
agegrl = ifc(18 <= age <= 59 %str(,) "18-59" %str(,) "60+") S%str(;)

output %str(;)

;

data adsl
(drop = subjidn) ;
call streaminit(2024) ;
array r (3) $ 20 temporary
("Asian"™, "Black", "White") ;
retain studyid "001"
siteid "O1"

length usubjid $ 11 ;

arm = "Group 1" ;

do subjidn = 1 to 10 ;
&macvar.

end ;

arm = "Group 2" ;

do subjidn = subjidn to subjidn + 7 ;
&macvar.

end ;

arm = "Group 3" ;

&macvar.

run ;

Table 1. The simulated data set (ADSL) used in the paper.

studyid | siteid | usubjid arm age | bmibl | race | saffl | ittfl | agegrl
001 01 001-01-0001 Group 1 42 67.2 | Black | Y Y 18-59
001 01 001-01-0002 | Group 1 | 66 | 61.3 | Black | Y Y 60+
001 01 001-01-0003 | Group 1 | 66 | 63.9 | Black | Y Y 60+
001 01 001-01-0004 | Group 1 64 30.6 | Asian | Y Y 60+
001 01 001-01-0005 Group 1 65 38.1 | White | Y N 60+
001 01 001-01-0006 | Group 1 41 47.9 | White | Y Y 18-59
001 01 001-01-0007 | Group 1 | 47 | 64.2 | Black | Y Y 18-59
001 01 001-01-0008 | Group 1 | 55 753 | Black | Y Y 18-59
001 01 001-01-0009 | Group 1 58 40.4 | White | Y Y 18-59
001 01 001-01-0010 | Group 1 59 34.8 | Black | N N 18-59
001 01 001-01-0011 Group2 | 38 32.1 | White | Y Y 18-59
001 01 001-01-0012 | Group2 | 70 | 22.7 | Asian | Y Y 60+
001 01 001-01-0013 | Group2 | 30 | 52.7 | Black | Y Y 18-59
001 01 001-01-0014 | Group2 | 22 28.5 | White | Y Y 18-59
001 01 001-01-0015 Group2 | 72 68.1 | Black | Y N 60+
001 01 001-01-0016 | Group2 | 20 73.7 | Black | Y Y 18-59
001 01 001-01-0017 | Group2 | 60 45.8 | White | Y Y 60+
001 01 001-01-0018 | Group2 | 71 389 | Asian | Y Y 60+
001 01 001-01-0019 | Group 3 | 66 27.5 | White | Y Y 60+

The summary and frequency listing of these data are in Table 2, Table 3 (Group 1 only), and Table 4,

(Group 2 only), respectively. These tables can verify the results in Table 9.

Table 2. The summary of continuous variables in ADSL for SAFFL = “Y” produced manually by the

MEANS procedure.
N Lower Upper
arm Obs |Variable | N Mean | Std Dev Median Quartile Quartile Minimum Maximum
Group 1 9 |age 9| 56.00 10.32 58.00 47.00 65.00 41.00 66.00
bmibl 9| 54.32 15.43 61.30 40.40 64.20 30.60 75.30
Group 2 8 |age 8 | 47.88 22.73 49.00 26.00 70.50 20.00 72.00
bmibl 8 | 45.31 18.48 42.35 30.30 60.40 22.70 73.70
Group 3 1 |age 1| 66.00 66.00 66.00 66.00 66.00 66.00
bmibl 1| 27.50 27.50 27.50 27.50 27.50 27.50

Table 3. The frequency of AGEGRL1 (a categorical variable) in ADSL for SAFFL = “Y” produced manually
by the FREQ procedure for GROUP 1.

Cumulative Cumulative
agegrl Frequency | Percent Frequency Percent
18-59 5 55.56 5 55.56
60+ 4 44 .44 9 100.00

Table 4. The frequency of RACE (a categorical variable) in ADSL for SAFFL = “Y” produced manually by
the FREQ procedure for GROUP 2.

Cumulative Cumulative
race Frequency | Percent Frequency Percent
Asian 2 25.00 2 25.00
Black 3 37.50 5 62.50
White 3 37.50 8 100.00

DIMENSION DATA SETS

The dimensions of the “matrix” are PAGE, SECTION, ROW, and COLUMN. The programmer does not

design the shells but follows it as a blueprint. Even when the order of rows is dynamic and determined by
the data, for instance, in a table that presents adverse events (AEs) by descending frequency, the
programmer is still following the shell (blueprint). The code in Appendix 1 provides a working example of
the data sets that associate an index with a label for the respective dimension.

Nesting occurs in the VALDS: Columns are nested in Rows, Rows are nested in Sections, and Sections

are nested in Pages. The following code creates the _ LEVELS data set, the collection of all labels,
indices, and nesting (partially displayed in Table 5) using the MAC_TFL_DIMENSIONS macro (Appendix
2):

$mac_tfl dimensions

(pages_ds = _ _pages

, sections_ds = _ sections
, rows_ds = __ rows

, columns_ds = _ columns
) .

Table 5. The __ LEVEL data sets produced as a combination of the _ PAGES, _ SECTIONS, _ ROWS,
and _ COLUMNS data sets.

page_1 page_order_1 | section_1 section_order_1 | row_1 row_order_1 | default | column_label | column
Safety Population 1 | Race, n(%) 1 | Race, n(%) 0 Group 1 1
Safety Population 1 | Race, n(%) 1 | Race, n(%) 0 Group 2 2
Safety Population 1 | Race, n(%) 1 | Race, n(%) 0 Group 3 3
Safety Population 1 | Race, n(%) 1 | Race, n(%) 0 Total 4
Safety Population 1 | Race, n(%) 1 | Asian 10 Group 1 1
Safety Population 1 | Race, n(%) 1| Asian 110 Group 2 2
Safety Population 1 | Race, n(%) 1| Asian 110 Group 3 3
Safety Population 1 | Race, n(%) 1| Asian 110 Total 4
Safety Population 1 | Race, n(%) 1 | Black 210 Group 1 1
Safety Population 1 | Race, n(%) 1 | Black 210 Group 2 2
Safety Population 1 | Race, n(%) 1 | Black 2|0 Group 3 3
Safety Population 1 | Race, n(%) 1 | Black 2|0 Total 4
SNIPPED
Safety Population 1 | Age (years) 2 | Age (years) 0 Group 1 1
Safety Population 1 | Age (years) 2 | Age (years) 0 Group 2 2
Safety Population 1| Age (years) 2 | Age (years) 0 Group 3 3
Safety Population 1| Age (years) 2 | Age (years) 0 Total 4
Safety Population 1 | Age (years) 2|n 110 Group 1 1
Safety Population 1 | Age (years) 2|n 110 Group 2 2
Safety Population 1| Age (years) 2|n 110 Group 3 3
Safety Population 1| Age (years) 2|n 110 Total 4
Safety Population 1| Age (years) 2 | Mean (SD) 2 Group 1 1
Safety Population 1 | Age (years) 2 | Mean (SD) 2 Group 2 2
Safety Population 1 | Age (years) 2 | Mean (SD) 2 Group 3 3
Safety Population 1| Age (years) 2 | Mean (SD) 2 Total 4
Safety Population 1| Age (years) 2 | Median 3 Group 1 1
Safety Population 1| Age (years) 2 | Median 3 Group 2 2
Safety Population 1| Age (years) 2 | Median 3 Group 3 3
Safety Population 1| Age (years) 2 | Median 3 Total 4
SNIPPED

BIG N DATA SETS

Column header totals, that is “Big N” may vary by page. In many cases, column Big N values are the
denominator for frequency listings. In the case of summaries (mean, for instance), the difference
between the N of the section and the Big N indicate that subjects have missing values. The following
code generates the Big N totals for the Safety Population:

$mac_tfl bign

(in_ds = adsl

, treat_group_var = arm

, total = Total

, dimension_ds = _ columns

, big n vars = saffl

, big n where = saffl = "y"
) i

A similar macro call created the Big N values for the Intent-to-Treat population and the data sets were
concatenated via a SET statement to create the data set BIG_N (Table 6, code not shown, but available
upon request). Appendix 3 presents the code of MAC_U_BIGN.

Table 6. The BIG N data set.

page_1 column_label | column | big_ n
Intent-To-Treat Population Group 1 1 8
Intent-To-Treat Population Group 2 2 7
Intent-To-Treat Population Group 3 3 1
Intent-To-Treat Population | Total 4 16
Safety Population Group 1 1 9
Safety Population Group 2 2 8
Safety Population Group 3 3 1
Safety Population Total 4 18

VARIABLE NAMES TO SECTION LABELS

Both macros to create the summary (CONtinuous data) and the frequency (CATegorical data) have the
options to create the section labels using a SAS System Format based on the variable name. The
following is and example of a FORMAT procedure to achieve this:

proc format ;
value § section format

"agegrl" = "Age Group, n(%)"
"race" = "Race, n(%)"
"age" = "Age (years)"

= "Baseline BMI (kg/m2)"

"bmibl"

run ;

“TURNING” THE DATA: CATEGORICAL DATA

Instead of calling a macro for each section (variable), the entire data set is “turned”, that is transposed.
This appears to be acceptable manipulation (programming) of analysis ready data. In this case each
datum or composite of datum, such as Mean and Standard Deviation, “Mean (SD)”, or frequency and
percent, “n (%)” requires only one (analytic) procedure. The exception is the use of ADSL to obtain the
dominator data, an acceptable derivation. The following is an example, though in the experience of the
author, unusual since one TF program typically creates one table. For example, even though one
program can easily create an output for each population for which ADSL (or another ADAM data set) has
a flag such as SAFFL and ITTFL, separate programs typically produce output for the separate tables.
The PAGE dimension is usually limited to one value and achieved by subsetting, not turning.

data ads cat
(drop = saffl
ittfl
)

set adsl
(keep = usubjid
agegrl
race
arm
saffl
ittfl

length page 1 $ 200 ;

if saffl = "y"
then
do ;
page 1 = "Safety Population" ;
output ;
end ;

if ittfl = "y"
then
do ;
page 1 = "Intent-To-Treat Population" ;
output ;
end ;

run ;

THE MAC_TFL_ADS_CAT MACRO

Appendix 4 presents the MAC_TFL_ADS_CAT macro (ADS is Analytical Data Set). For the first
example of this paper, the following generates the frequency listing for the categorical data:

$mac_tfl ads cat

(in_ds = ads_cat
, variables = agegrl
race
, in_keep = arm
page_ 1
, section format = $section format.
, total = Total
, denom_on = a.page_ 1 b.page 1

and a.column label b.column label

)

PRECISION

The number of decimal places required usually does not reflect the number of significant digits in the
original measurement in the field of clinical trials. Typically, this might rankle those with a background in
physical sciences, but it is not likely to affect biostatistical outcomes or interpretation (inferences). The
data set in Table 7 is an example of the precision (number of decimal places) a shell might demand. This
data set is used in the creation of the summary data (MAC_TFL_ADS_CON).

Table 7. The precision of the respective variables
and their summary measures.

section_1 row_1 format
Age (years) n 8.0
Age (years) mean 8.0
Age (years) median 8.0
Age (years) stddev 8.1
Age (years) min 8.0
Age (years) max 8.0
Age (years) ql 8.0
Age (years) q3 8.0
Baseline BMI (kg/m2) | n 8.0
Baseline BMI (kg/m2) | mean 8.1
Baseline BMI (kg/m2) | median 8.1
Baseline BMI (kg/m2) | stddev 8.2
Baseline BMI (kg/m2) | min 8.1
Baseline BMI (kg/m2) | max 8.1
Baseline BMI (kg/m2) | gl 8.1
Baseline BMI (kg/m2) | q3 8.1

THE MAC_TFL_ADS_CON MACRO

Appendix 5 presents the MAC_TFL_ADS_CON macro. An example call for this paper is:

$mac_tfl ads con
(in_ds = ads_con
, in_keep = arm
page_ 1
, variables = age
bmibl
, section format = $section format.
, summary stats =n
mean
stddev
median
ql
a3
min
max
, sSummary_ rows = section
n
mean_p_sd_p
median
ql g3
min_max
, precision_ds = _ precision
, precision_keys = section_ 1
row 1

THE MAC_R_PSRC MACRO

Once the datum or composite of data are generated with, or rather for, associated labels for the
dimensions, for instance PAGE_1 = “Safety Population”, SECTION_1 = "Race, n(%)", and ROW_1 =

“Asian”, the macro MAC_R_PSRC (PSRC is Page, Section, Row, Column; Appendix 6) associates those
labels with their respective indices in the (structural) data sets presented earlier.

Importantly, this macro can be used to create the matrix of all values defined in the data set and
establish their default value (presentation), in any. For instance, a level such as “Other” for race, might
be in the shell (in the Case Report Form), but not found in the data. The default value might be “0”. The
macro circumvents the cumbersome IF-THEN-ELSE approach that might handle this issues.

The following “pigeon holes” the data into their respective cells, then UPDATESs the Default data set with
the data (TFL_OUTSAS), replacing missing values with data, then UPDATES the data with updated
Default data set:

$mac_r psrc data default ;
(out_ds = default update default
, in_ds = _ levels tfl outsas
, in_by = page order 1 ;
section_order 1 by page_order 1
row_order 1 section order 1
, val_var

default row_order_1
N .

, hash_lookup
) i

run ;

data tfl outsas ;

smac_r_psrc update tfl_outsas
(out_ds = tfl_outsas default
, in ds = ctf summary ;
, levels ds = _ levels by page order 1
= value section order_ 1

, val_var
) row_order_1

Table 8 shows a few rows of the DEFAULT data set (upper panel), the DEFAULT data set UPDATEd
with the TFL_OUTSAS data (middle panel), and the TFL_OUTSAS data set (bottom panel) UPDATEd
with the intermediate data set in the middle panel:

Table 8. The results of careful updates, including interations, of the DEFAULT and
TFL _OUTSAS to obtain levels and defaults for data not present in the ADSL.

coll col2 col3 col4 page_1 page_order_1 | section_1 | section_order_1 | row_1 row_order_1

Safety Population 1 | Race, n(%) 1 | Race, n(%) 0
0 0 0 0 Safety Population 1 | Race, n(%) 1| Asian 1
0 0 0 0 Safety Population 1 | Race, n(%) 1| Black 2
0 0 0 0 Safety Population 1 | Race, n(%) 1 | White 3
0 0 0 0 Safety Population 1 | Race, n(%) 1 | Other 4
0 0 0 0 Safety Population 1 | Race, n(%) 1| Missing 5

Safety Population 1 | Race, n(%) 1 | Race, n(%) 0
1 (11.1%) | 2 (25.0%) | 0 3 (16.7%) | Safety Population 1 | Race, n(%) 1 | Asian 1
5(55.6%) | 3(37.5%) | O 8 (44.4%) | Safety Population 1 | Race, n(%) 1 | Black 2
3(33.3%) | 3(37.5%) | 1 (100.0%) | 7 (38.9%) | Safety Population 1 | Race, n(%) 1 | White 3
0 0 0 0 Safety Population 1 | Race, n(%) 1| Other 4
0 0 0 0 Safety Population 1 | Race, n(%) 1| Missing 5

Safety Population 1 | Race, n(%) 1 | Race, n(%) 0

Safety Population 1 | Race, n(%) 1 | Race, n(%) 0
1 (11.1%) | 2 (25.0%) | 0 3 (16.7%) | Safety Population 1 | Race, n(%) 1 | Asian 1
5(55.6%) | 3(37.5%) | 0 8 (44.4%) | Safety Population 1 | Race, n(%) 1 | Black 2
3(33.3%) | 3(37.5%) | 1(100.0%) | 7 (38.9%) | Safety Population 1 | Race, n(%) 1 | White 3
0 0 0 0 Safety Population 1 | Race, n(%) 1| Other 4
0 0 0 0 Safety Population 1 | Race, n(%) 1| Missing 5

Whether a level is not present in the data or not present in a given group, it appears in the final table with
its appropriate default value.

THE RESULTING TABLES

Table 9 presents the first table in the output. Both the derivations and the cells (order) can be checked
against the data presented above. The code in Appendix 7 generates this table using the VALDS model
and associated macro presented by Viel'2, Notably, adding or deleting columns (such as Group 1 + 2) or
rearranging the table is a simple as updating the structural data sets (such as _ COLUMNS) and adding
the group to the input data set (with care needed for the correct total values.

Table 9. The resulting table.

Safety Population

Group 1 Group 2 Group 3 Total
(N = 9) (N = 8) (N = 1) (N = 18)
Race, n(%)
Asian 1 (11.1%) 2 (25.0%) 0 3 (16.7%)
Black 5 (55.6%) 3 (37.5%) 0 8 (44.4%)
White 3 (33.3%) 3 (37.5%) 1 (100.0%) 7 (38.9%)
Other 0 0 0 0
Missing 0 0 0 0
Age (years)
n 9 8 1 18
Mean (SD) 56 (10.3) 48 (22.7) 66 (N/R) 53 (17.0)
Median 58 49 66 59
01, 03 47, 65 26, 71 66, 66 41, 66
Min, Max 41, 66 20, 72 66, 66 20, 72
Age Group, n(%)
18-59 5 (55.6%) 4 (50.0%) 0 9 (50.0%)
60+ 4 (44.4%) 4 (50.0%) 1 (100.0%) 9 (50.0%)
Baseline BMI (kg/m2)
n 9 8 1 18
Mean (SD) 54.3 (15.43) 45.3 (18.48) 27.5 (N/B) 48.8 (17.35)
Median 61.3 42.3 27.5 46.8
01, 03 40.4, 64.2 30.3, 60.4 27.5, 27.5 32.1, 64.2
Min, Max 30.6, 75.3 22.7, 73.7 27.5, 27.5 22.7, 75.3

CAPTURING THE SAS CODE GENERATED BY THE MACRO OR DEBUGGING

The macro MAC_DEBUG_MFILES can be used to capture the (unformatted) SAS code generated by a
macro. This may help study the macro or investigate errors or other issues. Some regulatory agencies
may not want externally defined SAS macros called in programs.

$mac_debug mfile
(mcall = mac_tfl ads cat

(in_ds = ads_cat
, variables = agegrl
race
, in_keep = arm
page_1
, section format = $section format.
, total = Total
, denom_on = a.page_1 = b.page_ 1

and a.column_label = b.column label

If run interactively in Windows, then the macro copies the generated SAS code to the clipboard. Typing
Ctrl-V in a text editor will produce the following (unformatted) code:

CONCLUSION

This paper contributes to the automation and standardization of table and listings programs by providing
macros that reduce the logic requirements of arranging derived data into pages, sections, rows, and
columns. This allows the programmer to concentrate on the derivations, including accuracy and
efficiency. The data sets that assign “structural” aspects, such as the column number into which a given
group is assigned can be provided to a programming group, once validated. Updates, changes, and
corrections, especially re-arrangements are reduced to changing the numbers associated with labels
without many coding changes, especially when used in conjunction with the MAC_R_REPORT macro.

REFERENCES

1 Viel, KR. “A Standard Data Set Format for the Validation of Tables and Listings in Regulatory
Submissions for Clinical Trials.” Conference Proceedings: PHUSE US Connect 2023. PP17. Available at
https://phuse.s3.eu-central-1.amazonaws.com/Archive/2023/Connect/US/Florida/PAP_PP17.pdf and
https://phuse.s3.eu-central-1.amazonaws.com/Archive/2023/Connect/US/Florida/POS_PP17.pdf.

2 Viel, KR. “A Standard Dataset Format in Regulatory Submissions for Clinical Trials: Automatic Creation
of Headers, Headers of Headers, and Footnotes." Conference Proceedings: PHUSE US Connect 2024.
SMO04. Available at https://phuse.s3.eu-central-
1.amazonaws.com/Archive/2024/Connect/US/Bethesda/PAP_SMO04.pdf

3 Viel, K. 2016. "Capturing Macro Code when Debugging in the Windows Environment: The Power of
MFILE and the Simplicity of Pasting." Proceedings of the PharmaSUG 2016 Conference, Denver, CO:
PharmaSUG. https://www.pharmasug.org/proceedings/2016/TT/PharmaSUG-2016-TT17.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Kevin R. Viel, Ph.D.

Navitas Data Sciences
kevin.viel@navitaslifesciences.com
www.navitasdatasciences.com

Histonis, Incorporated
kviel@histonis.org

Any brand and product names are trademarks of their respective companies.

10

https://www.pharmasug.org/proceedings/2016/TT/PharmaSUG-2016-TT17.pdf

Appendix 1. The structural data sets that assign indices (numbers) to labels for each dimension of the
“matrix”.

1 data _ pages ;
2
3 length page 1 $ 200 ;
4
5 do page 1 = "Safety Population"
6 , "Intent-To-Treat Population"
7 .
8 page order 1 + 1 ;
9 output ;
10 end ;
11
12 run ;
13
14 JER ARk Rk]
15 | data _ sections ;
16
17 length section_1 $ 200 ;
18
19 section_1 - "Race, n(%)" ;
20 section order 1 = 1 ;
21 output ;
22
23 section_1 = "Age (years)" ;
24 section_order 1 + 1 ;
25 output ;
26
27 section_1 = "Age Group, n(%)"
28 section order 1 + 1 ;
29 output ;
30
31 section 1 = "Baseline BMI (kg/m2)" ;
32 section_order_1 + 1 ;
33 output ;
34
35 run ;
36
37 JERR ARk Rk]
38 data __rows ;
39
40 length section_1
41 row 1
42 default $ 200
43 ;
44
45 section_1 = "Race, n(%)" ;
46 row 1 = section_1 ;
47 row_order_1 = 0 ; B
48 output ;
49 default = "o" ;
50 row 1 = "Asian" ;
51 row order 1 + 1 ;
52 output ;
53 row 1 = "Black" ;
54 row_order_1 + 1 ;
55 output ;
56 row 1 = "White" ;
57 row_order_1 + 1 ;
58 output ;
59 row 1 = "Other" ;
60 row_order_1 + 1 ;
61 output ;
62 row 1 = "Missing" ;
63 row order 1 + 1 ;
64 output ;
65
66 /rEx/
67 section_1 = "Age Group, n(%)" ;
68 row 1 = section_1 ;
69 row order 1 = 0 ;
70 default =""y
71 output ;
72 default = "o" ;
73 row 1 = "18-59" ;
74 row order 1 + 1 ;
75 output ;
76 row 1 = "60+" ;
77 row order 1 + 1 ;
78 output ;
79
80 do section 1 = "Age (years)"
81 , "Baseline BMI (kg/m2)"
82 ;
83
84 row_1 section_1 ;
85 row order 1 = 0 ;
86 default ="";
87 output ;
88
89 default = ;
90 do row 1 = "n"
91 , "Mean (SD)"
92 , "Median"
93 , "Ql, Q3"
94 , "Min, Max"
95 ;
9 row order 1 + 1 ;
97 output ;
98 default = " " ;
99 end ;
100 end ;
101
102 run ;
103
104 JEER AR ARk)
105 data __columns ;
106
107 length column_label $ 200 ;
108
109 column_label = "Group 1"
110 column =1

11

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

output ;
column_label
column
output ;
column_label
column
output ;
column_label
column
output ;

run ;

proc sql
noprint ;
select max(
in
from __colum

quit ;

“Group 2" ;
1

“Group 3"
15

"Total" ;
1

column)

to
ns

num_of_cols separated by

12

Appendix 2. The MAC_TFL_DIMENSIONS macro.

= %str()
$str()
%str()
$str()
= %str()
=N

%sysfunc (getoption (mprint))

ogram: This macro will take the dimensions data sets and create _ LEVELS, which provides
)the labels and their respective order variables for the tables and listing, i.e the
)"shell" (multiple dimensional matrix) with cells index by the order variables.

er Description

The list of pages delimited by #, with the first page prefixed with #. The page order
)is the order of apparence in this list.

The sections and rows ed by #, with the first section prefixed with #.
)nested in sections and delimated by |, with the first row prefixed with
)is the order of apparence in this list.

The list of columns delimited by #, with the first column prefixed with #. The column order
)is the order of apparence in this list.

Optional code run before the cartesian join of the dimension data sets.
)Default: %nrstr(%%)strsstr(()).

pages data set (PAGE 1, PAGE ORDER 1)
)Default: %nrstr(%%)str¥str(()).

sections data set (SECTION 1, SECTION ORDER 1)
)Default: %nrstr(%%)str¥str(()).

rows data set (ROW_1, ROW_ORDER_1)
)Default: %nrstr(%%)strsstr(()).

Columns data set (COLUMN_LABEL, COLUMN)
)Default: %nrstr(%%)strestr(()).

The rows are
| . The order

de

1 $macro mac_tfl dimensions
2 (pages
3 , sections_rows
4 , columns
5 , dimensions_code
6 , pages_ds
7 , sections_ds
8 , rows_ds
9 , columns_ds
10 , help
11) i
12
13 %$if &help. = Y
14 $then
15 %do ;
16 %let mprint orig =
17 options nomprint ;
18
19 skip ;
20 skip ;
21 Sput
22 %put Purpose of pr
23 Sput $str(
24 Sput $str(
25 skip ;
26 %put Macro Paramet
27 2put
28
29
30 %put pages
31 Sput $str(
32 Sput sections_rows
33 Sput $str(
34 Sput $str(
35 $put columns
36 Sput $str(
37 Sput dimensions_co
38 Sput $str(
39 $put pages ds
40 %put $str(
41 $put sections ds
42 %put $str(
43 sput rows_ds
44 Sput $str(
45 Sput columns_ds
46 Sput $str(
47 Sput
48 %put End of help
49
50 options &mprint_or
51
52 %goto _ END ;
53 %end ;
54
55 %global num of cols ;
58 $if &pages_ds. = %str()
59 $then
60 %do ;
61 data _ pages
62 (drop =r1s
63
64 length r_s
65 page 1
66 page_orde
67 ;
68
69 r_s = %unquote(%
70
71 do page_order_ 1
72 page_1 = strip
73 output ;
74 end ;
75
76 run ;
77
78 %let pages_ds = _ |
79
80 %$end ;
81
82 VAl
83 $if §ions_ds. = %
84 or &rows_ds. =%
85 %then
86 sdo
87 data %if §ions
88 %then
89 __sections
90 (keep =
91 ;
92 %if &rows_ds.
93 %then
94 __rows
95 (keep =
96
97
98)
99 ;
100 ;
101
102 length r_s
103 text
104 section_1
105 $1if &rows
106 %then row
107 def.
108 ;i
109
110 i
111

ig.

B s

)

$ 30000
s 200
r 18

str(%') &pages.%str(%s'))

1 to countc(r_s , "#")
(scan(r_s , page_order 1 ,

e

))

pages

str()
str()

_ds.

%str()

section:

)

$str()

section:
row:
default

$ 30000
$ 10000

_ds.
1
ault

$str()

$ 200

13

112 r_s = %unquote (%str(%')§ions_rows.%str(%')) ;
113
114 do section_order_1 = 1 to countc(r_s , "#") ;
115
116 text = scan(r_s , section order 1 , "#")
117
118 section_ 1 = strip(scan(text , 1, "|")) ;
119
120 $if §ions ds. = %str() %then output __sections %$str(;) ;

121 %if &rows_ds. = %str()

122 Sthen

123 %do ;

124 do row order 1 = 1 to countc(text , "|") ;

125 row 1 = strip(scan(scan(text , row order 1 + 1 , "|") , 1

126 default = strip(scan(scan(text , row order 1 + 1, "[") , 2, "~"
127 output _ rows ;

128 end ;

129 %end ;

130 end ;

131
132 run ;
133
134 %if §ions_ds. = %str() %then %let sections_ds = _ sections ;
135 %$1f &rows_ds. = %str() %then %let rows_ds = __rows ;
136
137 %end ; /* END OF sections_ds = str() or rows_ds = str() */
138
139 Ykl

140 %if &columns_ds. = $str()

141 %then

142 %do ;

143 data _ columns

144 (drop =r.s) ;
145
146 length r_s $ 1000
147 column_label § 200
148 ;

149
150 r_s = %unquote(%str(%')&columns.%str(%')) ;
151
152 do column = 1 to countc(r s , "#") ;

153 column_label = strip(scan(r_s , column , "#")) ;
154 output ;

155 end ;

156
157 call symputx("num of cols"

158 put (column , 8.0)
159) i

160
161 run ;
162
163 $let columns_ds = _ columns ;
164
165 $end ;
166
167 &dimensions_code.
168
169 JER R AR KRR AR]

170 /* Cartesian */

171 JER R AR KRR AR]

172 proc sql ;

173 create table _ levels as

174 select a.*

175 , b.*

176 ; C.*

177 from &pages_ds. as a

178 ; (select aa.*

179 , bb.row_1

180 , bb.row_order 1

181 » bb.default

182 from §ions_ds. as aa

183 , &rows_ds. as bb

184 where aa.section 1 = bb.section 1
185) as b

186 , &columns_ds. as c

187 order by a.page_order_1

188 , b.section_order 1

189 , b.row_order_1

190 , c.column

191 ;
192 quit ;
193
194 %__END:
195
196 %mend mac tfl dimensions ;

14

Appendix 3. The MAC_TFL_BIGN macro.

$macro mac_tfl bign

(in_ds =
treat_group_var
total = %str()
dimension_ds = sstr()
dimension label column_label

dimension order = column
big n_vars $str()
big n_where = %str()
’

help =N
) i

%$if &help. = Y

%then

%do ;
3let mprint_orig = $sysfunc(getoption (mprint)) ;
options nomprint ;
skip ;
skip ;
2put
%put Purpose of program: This program will compute the Big N (column header or section header for instance) values for a given
Sput $str()treatment variable (column), column data set, and optional subsetting condition.
skip ;
%put Macro Parameter Description
2put
$put in_ds = Input data set.
$put treat group var = Variable defining the groups, i.e. the columns.
$put total = The name of the summary column. If this value is not populated, then the column
gput $str()Default: $nrstr(%%)stristr(()).
$put dimension_ds = The data set that contains the dimension labels and their respective ordinal numbers.
gput $str()Default: $nrstr(%%)stristr(()).
$put big n vars = Additional variables to keep from IN DS (for BIG N WHERE) .
sput ¥str()Default: %nrstr(%%)str¥str(()).
sput big n where = Options WHERE data set option to IN DS.
sput ¥str()Default: %nrstr(%%)str¥str(()).
Sput
%put End of help
options &mprint_orig. ;
%goto _ END ;

%end ;

SRR ARSI A A BIg N KA KA KRR AR KA AR [

data big_n

%if %nrbquote (&big n_vars.) ne %str() %then (drop = &big n vars.) ;

length &dimension label. $ 200 ;

set &in ds.
(keep = studyid
usubjid
streat_group_var.
&big_n_vars.
rename = (&treat_group_var. = &dimension_label.)
$if %nrbquote (4big_n_where.) ne %str()
%then where = (&big_n_where.) ;

%if &total.
%then
%do ;
output ;
&dimension_label. = "&total." ;
output ;
%end ;

ne %str()

run ;

proc sql
undo_policy = none ;
create table big n as
select a.*
, case when b.&dimension_label.
else 0

end as big n

from sdimension_ds. as a

ne " " then b.big n

left join (select &dimension_label.
, count(distinct catx("/"
, studyid
, usubjid
)
) as big n
from big_n
group by &dimension_label.
) as b
on a.sdimension_label. = b.&dimension_label.

order by a.&dimension_order.

quit ;

%_ END:

$mend mac tfl bign ;

15

Appendix 4. The MAC_TFL_ADS_CAT macro.

1 $macro mac_tfl ads cat

2 (dimensions = page_1
3 section_1

4 row 1

5 column_label

6 in_ds =

7 in_keep = %str()

8 out_keep = %str()

variables =

rename = arm = column_label

where = %str()

code = %str()

section_format = $200.

subject id = usubjid

total = Total

denom_on = a.column_label = b.column_label
include missing = N

debug =N

,_.
w

21 data ads_cat

22 (keep = &subject_id.

23 &dimensions.

24 value

25 $if %nrbquote (§out_keep.) ne %str() Sthen &out_keep. ;

27 ;

29 length &dimensions.
30 value $ 200
31 ;

34 set &in ds.

35 (keep = &subject_id.

36 &variables.

37 %if %nrbquote(&in_keep.) ne %$str() %then &in_keep. ;
38 rename = (&rename.)

40 %if %nrbquote (&éwhere.) ne %str()
41 %then where = (&where.) ;

44 ;i
46 &code.

48 array _ v (*)
49 &variables.
50 ;

52 do n_ =1 todim(_v) ;
53 row_1 =_v(_n_) ;

54 section 1 = put(lowcase(vname(__v(_n_))) , §ion_format.) ;
55 value = "y"

56 output ;

57 end ;

59 run ;

61 %if &total. ne %str()

62 %then

63 %do ;

64 data ads_cat ;

65 set ads_cat ;

66 output ;

67 column_label = "gtotal."
68 output ;

69 run ;

70 %end ;

72 ey
73 ¢let dimension_number = %eval(%sysfunc(countc($nrbquote ($sysfunc(compbl(&dimensions.))) , %str())) + 1) ;

75 ods listing close ;

77 proc freq
78 data = ads_cat ;

80 ods output CrossTabFregs = ctf
81 (keep = &dimensions.

82 value

83 _type_

84 frequency

85 where = (_type_ = "$sysfunc(repeat(1 , &dimension_number.))"
86 and value = "Y"

87)

91 tables sysfunc(prxchange(s/\s+/%str(*)/
92 , -1
93 , &dimensions.
94)

96 * value
97 / nocol

98 norow

99 nopercent

100 %if ginclude missing. = Y Sthen missing ;
101 ;

103 run ;

105 ods output close ;
106 ods listing ;

107
108 %if &debug. = N

109 %then

110 %do ;

111 proc datasets

16

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

library = WORK
nolist

delete ads_cat
quit ;
%end ;

proc sqgl ;
alter table ctf
drop value
, _type_

quit ;

proc sql
undo_policy = none

create table ctf as
select a.*
, case when n

and b

then a.frequency / b.big n * 100

else
end as percent
from ctf
left join big n
on &denom_on.

quit ;

%if &debug. = N

%then
%do ;
proc datasets
library = WORK
nolist
delete big n ;
quit ;
%end ;
data ctf
(drop = frequ

perce

length value $ 200
1

2 s 20

set ctf ;

if frequency ne .
then 1 = put(freque

if percent ne
then _ 2 = put(percen

if cmiss(

1
2
0

)
then
do ;
if _ 2 =put(o0,
then value = stri
else value = cat

end ;
run ;
proc sort

data = ctf ;
by %sysfunc(prxchange

run ;

%mend mac tfl ads cat ;

miss (a.frequency
,» b.big n
) =0

.big_n ne 0

as a
as b

ency
nt

ncy , 8.0) ;

t, 8.1) ;

8.1)
pl _ 1) ;

(strip(_ 1
S

, strip(_ 2

, neym

) i

(s/column_label//i

, &dimensions.

)

17

Appendix 5. The MAC_TFL_ADS_CON macro.

$macro mac_tfl ads con
(dimensions =

in_ds
in_keep
out_keep
variables
rename =
where

code
section_format
transpose_doloop_code
summary_stats

summary stats_add =~ =
summary rows

summary_rows_add
subject id

total =
class =

precision ds
precision_keys =
precision format var

not_applicable =
debug

JrErxxx)
data ads_con
(keep

page 1
section 1
column_label

Sstr()
$str()

arm = column_label

section

n
mean_p_sd_p
median p gl _g3_p
%str()
usubjid
Total

page 1
section_1
column_label
Sstr()

$str()
format

N/A

=N

= ssubject_id.

&dimensions.

value

$1f %nrbquote (&out_keep.) ne %str()

length &dimensions.

set &in_ds.
(keep =

%then &out_keep. ;

$ 200

&subject id.

&variables.

%1if %nrbquote (&in_keep.) ne $str()
(&rename.)

rename =

%then &in_keep. ;

%$if %nrbquote (¢where.) ne %str()

%$then where =
&code.

array _ v (*)

&variables.
do _n_ =1 todim(_v) ;
$1f $nrbquote (stranspose doloop code.) = %str()
%then
%do ;
section_1 = put(lowcase(vname(_ v(_n_))) , §ion_format.
value =_v(_n_) ;
%end ;
%else
%do ;
stranspose_doloop code.
%end ;
output ;
end ;
run ;
%if s&precision_ds. = %str()
%then
%do ;
%mac_u precision
(Tin_ds = ads_con
, out_ds precision
, group &precision_keys.
, var value
, varu 2str ()
, format best32.
, precision_var = format
)
%end ;
%$if &total. ne %str()
%then
%do ;
data ads_con ;
set ads_con ;
output ;
column_label = "gtotal." ;
output ;
run ;
%end ;

JEEEE AR AR AR AR AR

(&where.) ;

18

109 ods listing close ;
110
111 proc means

112 data = ads_con

113 &summary_stats.

114 &summary_ stats_add.
115 stackodsoutput

116 ;

117
118 ods output summary = summary ;
119
120 class &class. ;
121
122 var value ;
123
124 run ;
125
126 ods output close ;
127 ods listing ;

128
129 %$if &debug. = N

130 %then

131 %do ;

132 proc datasets

133 library = WORK
134 nolist

135 ;

136 delete ads_con ;
137 quit ;

138 %end ;

139
140 Vbl

141 %if %nrbquote (&éprecision_keys.) ne $str()

142 $then

143 sdo ;

144 data null ;

145 call symput("precision_keys"

146 ,ocat('

147 , prxchange('s/\s+/" , "/'

148 , -1

149 , compress(compress("&precision_keys."™ , '"') , "'")
150
151 , o
152)

153) i

154 run ;

155
156 data _null_ ;

157 call symput("precision keys2"

158 , cats(prxchange("s/\s+/= /"

159 , -1

160 , compress(%unquote($str(%')&precision_keys.%str(%')) , '",')
161
162 , men
163)

164)i

165 run ;

166 %end ;

167
168 VAl

169 data summary

170 (keep = &dimensions.
171 row_1

172 value

173)

174 ;

175
176 %if g&precision_ds. ne %$str()
177 %then

178 sdo ;

179
180 if 0 then set &precision_ds. ;
181
182 if n_=1

183 then

184 do ;

185 dcl hash _ format

186 (dataset: "&precision_ ds.")
187 ;

188
189 rc = _ format.definekey

190 (sprecision keys.) ;

191 __rc = _ format.definedata

192 ("sprecision_format_var.") ;
193 __rc = _ format.definedone() ;

194 end ;

195 $end;

196
197 set summary

198 (drop = nobs

199 _control_
200 variable
201)

202 ;

203
204 length row_ 1
205 value $ 200

206 1

207 2

208 sif %sysfunc(prxmatch(/\bmedian p min max p\b/i , &summary rows.))
209 or 3$sysfunc(prxmatch(/\bmedian p_gl_g3_p\b/i , &summary rows.))
210 %then _ 3 ;

211 $ 100

212 ;

213
214 array _ sumstats

215 Tr

216 &summary_stats.
217 gsummary stats_add.
218 ; B B
219
220 array _ sumstatsf
221 *)

222 $ 100

19

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

__ %sysfunc(prxchange(s/ / __/
, -1
, %sysfunc(compbl (&summary stats. &summary stats add.))
)

1 to dim(_ sumstats) ;
lowcase(vname(__ sumstats(_n_))) ;
__rc - _ format.find() ;

if _rcone 0
then
do 7
put "W" "ARNING: "
&precision_keys2.

sprecision_format_var. = "8.0"
end ;
if _ sumstats(_n_) ne .
then
do ;
_ sumstatsf(_n_) = left(putn(_ sumstats(_n_) , &precision format_var.)) ;
if prxmatch("/-0(2:\.0+)?8/" , strip(_ sumstatsf(_n_))) then _ sumstatsf(_n_)

end ;
end ;

%if %sysfunc(prxmatch(/\bsection\b/i , &summary rows.))
$then

%do ;

$if %$sysfunc(prxmatch(/\bn\b/i , &summary rows.))
%then
%do ;
row 1 = "n" ;
value = _n ;
output ;
%end ;

%if %$sysfunc(prxmatch(/\bsection_n\b/i , &summary_rows.))

%then
%do ;
row_1 = section_1 ;
value = _n ;
output ;
%end ;

%if $sysfunc(prxmatch(/\bmean_p_sd_p\b/i , &summary_rows.))

%then
%do
row_1 = "Mean (SD)" ;
if mean ne then 1 = mean ;
if stddev ne then _ 2 = _ stddev ;
else _ 2 = "snot_applicable." ;
value = catx(" "
, 1
, cats(" ("
)
)
output ;
%end ;

%if %sysfunc(prxmatch(/\bmean p pm stderr_p\b/i , &summary rows.))

%then
%do ;

row_1 = "Mean (+/-SEM)" ;

if mean ne . then __1 = _ mean ;

if stderr ne

then

do ;
_ 2 = _ stderr ;
value = catx(" "
, 1
;o cats("(+/-"
oy
)
)i
end ;

else value = catx(" "
, 1
, "(¬_applicable.)"
)

output ;

%end ;

%if %sysfunc(prxmatch(/\bmean\b/i , &summary rows.))

%then
%do ;
row 1 = "Mean"
value = _ mean ;
output ;
%end ;
$if $sysfunc(prxmatch(/\bsd\b/i , &summary rows.))
%then
%do ;
row 1 = "SD" ;
if stddev ne then value = _ stddev ;
else value = "gnot_applicable." ;
output ;
%end ;
%$if $sysfunc(prxmatch(/\bmedian_p_min_max_p\b/i , &summary_rows.))
%then
%do ;

row 1 = "Median (Min, Max)" ;
if median ne then 1= median ;

= substr(_ sumstatsf(

n

)

20

337 else 1 ="";

338 if min ne . then _ 2 = _min ;
339 else _2="1";

340 if max ne . then _ 3 = max ;
341 else _3="";

342 value = cat(strip(__1)

343 st

344 , strip(_2)

345 Lo,

346 , strip(_3)

347 ,om

348)

349 output ;

350 %end ;

351

352 %$if $sysfunc(prxmatch(/\bmedian_p_gl_g3_p\b/i , &summary_ rows.))
353 %then

354 %do ;

355 row 1 = "Median (Q1l, Q3)" ;

356 if median ne . then _ 1 = _ median ;
357 else _1="";

358 if ql ne . then 2= _ql ;
359 else _ 1 ="";

360 if g3 ne . then _ _a3;
361 else _3="1";

362 value = cat(strip(__1)

363 Lo

364 ;o strip(_2)

365 Lo,

366 , strip(_3)

367 M

368) i

369 output ;

370 %end ;

371

372 $if %$sysfunc(prxmatch(/\bmedian\b/i , &summary rows.))
373 %then

374 sdo ;

375 row 1 = "Median" ;

376 if median ne . then value = _ median ;
377 output ;

378 %end ;

379

380 $1if %$sysfunc(prxmatch(/\bp_min _max p\b/i , &summary_ rows.))
381 %then

382 %do ;

383 row_1 = "(Min, Max)" ;

384 if min ne . then _1 = _min ;
385 else _1="";

386 if max ne . then _ 2 = _ max ;
387 else 2 ="";

388 value = cat(" ("

389 , strip(1)

390 s

391 , strip(2)

392 ;o

393)

394 output ;

395 $end ;

396

397 $1if %$sysfunc(prxmatch(/\bmin max\b/i , &summary rows.))
398 %then

399 %do ;

400 row_1 = "Min, Max" ;

401 if min ne . then _1 = _min ;
402 else _1="";

403 if max ne . then _ 2 = _ max ;
404 else _ 2 ="";

405 value = cat(strip(__ 1)

406 T

407 , strip(_2)

408) i

409 output ;

410 %end ;

411

412 %1if %$sysfunc(prxmatch(/\bgl_g3\b/i , &summary_ rows.))
413 %then

414 sdo ;

415 row_1 = "Ql, Q3" ;

416 if ql ne . then _1=_gql ;
417 else _1="";

ﬁg if g3 ne . then _ 2 =_q3 ;
120 else _2="";

421 value = cat(strip(_ 1)

422 Lo,

423 ;

e , strip(_2)

425) i

426 output ;

427 %end ;

428

429

430 run ;

431

432 proc sort

433 data = summary ;

435 by %sysfunc(prxchange(s/column_label//i
436 ;-1

437 , &dimensions.

438

439

440)

441 row_1

442 ;

443 .

i1 run ;

445

446 %mend mac tfl ads con ;

21

Appendix 6. The MAC_R_PSRC macro.

1 $macro mac_r_psrc

2 (out_ds -

3 , in_ds =

4 , in_by = page_ 1
5 section_1

6 row 1

7 levels_ds = _ levels

8 levels = page_order_1

9 section order_ 1
10 row_order_1
column_hash_key = page_1

val_var value
hash_lookup =Y

,_.
w

16 $if &hash_lookup. = Y

17 and %nrbquote (scolumn_hash_key.) ne %str()

18 and (%$sysfunc(indexc(%nrbquote (&column_hash_key.) , %str(%'s")))
19 or ($sysfunc(indexc(%$nrbquote (&column hash key.) , %str()
20 and $sysfunc(indexc(%nrbguote (scolumn_hash_key.) , %str(,)
21)

=0
)
) =0

23 $then
24 sdo

26 %let column_hash_key = %$gsysfunc(compress(&column_hash_key. , %str($'s")))
28 data _null_ ;

30 call symput("column_hash_key"
31 , cats("""

32 , prxchange('s/\s+/" , "/'
33 ;-1

34 , "&column_hash_key."
35)

36 , o

39 stop ;
40 run ;

42 %$end ;

44 /xxx/

45 data &out_ds.

46 (drop = column_label
47 column

48 keep = page_:

49 section_:

50 row_:

51 col:

52) i

54 %if ghash_lookup. = Y
55 %then
56 %do ;

58 if 0 then set &levels ds. ;

63 /* (page) label to page_order_n */
64 declare hash 12pn

65)i

66 __rc = 12pn.DefineKey

67 ("page_1") ;

68 __rc = 12pn.DefineData

69 ("page_order_1") ;

70 __rc = 12pn.DefineDone() ;

73 /* (section) label to section_order n */
74 declare hash 12sn
75)
76 rc = 12sn.DefineKey
77 ("section_1") ;
78 rc = 12sn.DefineData
79 ("section order 1") ;
80 __rc = 12sn.DefineDone() ;
82 /* (row) label to row order 1 */
83 declare hash 12rl
84 [
85 __rc = 12rl.DefineKey
"page 1"
87 , "section_1"
88 , "row 1"

@
o

) i
90 __rc = 12rl.DefineData

91 ("row order 1") ;
92 __rc = 12rl.DefineDone() ;

94 /* (column) label to column (number) */

95 declare hash 1l2c

96 ()

97 __rc = l2c.DefineKey

98 (%if %nrbquote (&column_hash_key.) ne %str()
99 Sthen scolumn_hash _key. , ;

100 "column_label™

101)

102 __rc = 12c.DefineData

103 ("column") ;

104 __rc = 12c.DefineDone() ;

106 do until (endl) ;

107 set &levels ds.

108 end = endl

109 ;i

110 by &levels. ;
111

22

112 if first.page order 1 then rc = 12pn.ref() ;
113 if first.section order 1 then _ rc = 12sn.ref() ;
114 if first.row_order 1 then __rc = 12rl.ref() ;
115 _rc = 12c.ref() ;

116

117 end ;

118

119 JEEEEEEE R

120 call missing(page order 1
121 , page_1

122 , section order_ 1
123 , section_1
124 , row_order 1
125 , row 1

126 , column

127 , column_label
128)

129

130 end ; /* END OF n_ =1 */
131 %end ; /* END OF hash_lookup = Y */
132

133 array col(&num of_cols.) § 200 ;

134

135 do until (last.%$scan(&in by. , -1 , $str())) ;
136 set &in ds. ;

137 by &in by. ;

138

139 /xxx/

140 %if &hash_lookup. = Y

141 %then

142 %do ;

143 _ rc = 12pn.find() ;

144 if _rcne 0

145 then put "W" "ARNING: 12pn "
146 page_1=

147 ;i

148

149 _rc = 12sn.find() ;

150 if rc ne 0

151 then put "W" "ARNING: 12sn "
152 section_l=

153 ;

154

155 rc = 12rl.find() ;

156 if _rcone 0

157 then put "W" "ARNING: 12rl1 "
158 page_l=

159 section_l=

160 row_l=

161 ;o

162

163 __rc = 12c.find() ;

164 if _rcne 0

165 then put "W" "ARNING: 12c "
166 page_l=

167 section 1=

168 column_label=

169 ;

170

171 if __rc = 0 then col(column) = &val var. ;
172

173 %end ;

174 %else col(column) = &val var. %str(;) ;
175 end ;

176

177 run ;

178

179 proc sort

180 data = sout_ds. ;

181 by page_order 1

182 section_order_ 1

183 row_order 1

184 ;

185 run ;

186

187 $mend mac r psrc ;

Appendix 7. An example of a REPORT_DEFINE_OPTIONS data set and a call to MAC_R_REPORT.

107
108
109
110
111

data report_define_options ;

length page_ 1 $ 200
variable $ 32
define_options $ 200
cellwidth $ 10

do page 1 = "Safety Population"
, "Intent-To-Treat Population”
order =07
cellwidth =" " ;
Jrxn/
define options = "order order = data noprint" ;
do variable = "page_order_ 1"
"page 1"

’
, "section_order 1"
, "row_order 1"

order + 1 ;
output ;
end ;
Jrr)
variable = "row_ 1" ;
order + 1 ;
define_options = compbl('" "
order
style (column) = { cellwidth =
just
vjust =
)
style (header) = { just =
) g
output ;
Jrxx)
define options = " " ;
cellwidth = "15%" ;
do n =1tod;
order + 1 ;
variable = cats("col" , put(_n_, 8.0)) ;
output ;
end ;
end ; /* CYCLED THROUGH page_1 */
run ;
proc sort
data = tfl_outsas ;
by page order_1
type_order
descending header_ order
section order 1
row_order_1
run ;
JEEERR R AR R E AR K
options nobyline ;
title j = c "#byval(page 1)"
ods listing close ;
ods rtf
file = "spath.\tfl outsas.rtf"
$mac_r_report
(Tin_ds = tfl outsas
, page_by_vars = page_1
, num_of_cols snum_of_cols.
, report_define options_ds = report_define options
, report_options = style(report) = { width
frame
rules
cellpadding
cellspacing
borderwidth
fontfamily
fontsize
backgroundcolor
)
style(header) = { backgroundcolor
fontweight
)
style(column) = { just
viust
backgroundcolor
}
missing
, code_after_define = compute before section_order 1
/ style = { height = 18pt }
line " " ;
endcomp ;

compute row_1 ;

if row_order_1 > 0

then call define (_col_
%str(,) "style"
$str(,) "style

) i

= 100%
hsides
groups
1pt
Opt

1

= white
= medium

=c
m
= white

{ leftmargin

24

"Courier New"

112 endcomp ;
113
114 , report_by = page_1
115) i

116
117 ods rtf close ;
118 ods listing ;
119
120 title " " ;
121 footnote ;

