
1

PharmaSUG 2024 - Paper DV- 356

Standardizing Validation Data Sets (VALDS) as matrices indexed by Page,
Section, Row, and Columns (PSRC) to improve Validation and output

creation and revisions.

Kevin R. Viel, Ph.D., Navitas Data Sciences and Histonis, Inc.

ABSTRACT

Table and listing (TL) shells are blueprints specifying the dimensions of the output: PAGES, SECTIONS,
ROWS, and COLUMNS (PSRC), their orders, and the precision of the values in the cells indexed by
those dimensions. Values may be a composite such as Mean (SD). Viel introduced the Validation Data
Set (VALDS), a standardization data set derived and used as input to create output (RTF/PDF).
Importantly, the VALDS formalizes the structure and format of such data sets, standardizing 1) TL
programs of various types and projects, 2) their Validation, and 3) the manual (spot) checking of the
output against the VALDS. The programmer (independently) derives a value and inserts or “pigeon
holes” it into its respective cell in the VALDS. For instance, a derived value may be assigned to the cell
indexed as COLUMN 3 of PAGE 2, SECTION 3, and ROW 1 of the TL. The goal of this paper is to 1)
introduce the creation of an analytic data set (ADS) so that at most only one SAS System® FREQ and
one MEANS procedure is typically required for the entire program, to index the (composite) value using
its PAGE, SECTION, ROW, and COLUMN labels to place it in its appropriate cell of the VALDS matrix,
and to demonstrate an efficient way to populate default values, including for dimensions specified by the
shell, but absent in the data. Lastly, this paper demonstrates the ease of making major revisions to the
output with extremely minimal changes to the TL programs.

INTRODUCTION

When deriving the datum of composite of data to produce a table or listing, the programmer places the
data based on variables, perhaps guided by a shell. Technically, the term “derivation” should apply only
to tables since listing should be a presentation of a data set subset by observations and/or variables. For
instance, a flag variable such as SAFFL might define a page. Another example of a page might be a
PARAM (LBTEST) in ADLB. A section might be a characteristic such as AGE or RACE, but it may be a
VISIT. A row might be a value in that sections such as “ASIAN” or “Mean (SD)”, the latter being a
composite of two derived values.

 Whether or not the shell is used as blueprint, the table (listing) can be viewed as a matrix with
numerous cells. The indices of the cells related to the dimensions: PAGE, SECTION, ROW, and
COLUMN, which have associated numbers. Such a structure can be used to the advantage of a
programmer to standardize programs. The burden of the programmer is usually to derive the datum or
composite data that appears in the cell. Using the “labels” and data sets that assign the indices
(numbers) to a cell, reduces the burden on the programmer to place or “pigeon hole” the derived values
into their appropriate cells. For example, one might say PAGE = “AST”, SECTION = “VISIT 24”, ROW =
“Mean (SD)” and COLUMN = “Group 2 (N = 47)”. Using the shell, one might associate those labels with
numbers such as PAGE_ORDER_1 = 3, SECTION_ORDER_1 = 12, ROW_ORDER_1 = 3, and
COLUMN = 2. While the first might be intuitive to the anyone, the second allows the programmer to use
tools such as Hashes (associative arrays) and Arrays, while focusing on other issues like deriving the
data.

 This paper demonstrates this approach, which dovetails well into the VALidation Data Set
(VALDS) approach presented previously1,2. In the near future, aspects of the shell, like the number of
columns, order of pages, sections, and rows, and groups into columns as well as font-family and size and
precision should be abstracted directly from the shell. Further automation would include the dimensions
of the cells (height and width), which should allow the shell author to visualize these aspects at creation,
allowing adjustments, such as the reduction of the number of columns or rows per page before the final
output arrives.

2

SIMULATED ADSL

The following code generates a simulated ADSL with a seed that creates a repeatable data set (Table 1):

%let macvar = usubjid = catx("-" %str(,) studyid %str(,) siteid %str(,) put(subjidn %str(,) z4.)) %str(;)

 age = rand("INTEGER" %str(,) 18 %str(,) 85) %str(;)

 bmibl = rand("INTEGER" %str(,) 18 %str(,) 85) + round(rand("UNIFORM") %str(,) 0.1)%str(;)

 race = __r(rand("INTEGER" %str(,) 1 %str(,) 3)) %str(;)

 saffl = ifc(mod(subjidn %str(,) 10) = 0 %str(,) "N" %str(,) "Y") %str(;)

 ittfl = ifc(mod(subjidn %str(,) 5) = 0 %str(,) "N" %str(,) "Y") %str(;)

 agegr1 = ifc(18 <= age <= 59 %str(,) "18-59" %str(,) "60+") %str(;)

 output %str(;)

 ;

data adsl

 (drop = subjidn) ;

 call streaminit(2024) ;

 array __r (3) $ 20 _temporary_

 ("Asian", "Black", "White") ;

 retain studyid "001"

 siteid "01"

 ;

 length usubjid $ 11 ;

 arm = "Group 1" ;

 do subjidn = 1 to 10 ;

 &macvar.

 end ;

 arm = "Group 2" ;

 do subjidn = subjidn to subjidn + 7 ;

 &macvar.

 end ;

 arm = "Group 3" ;

 &macvar.

run ;

Table 1. The simulated data set (ADSL) used in the paper.

studyid siteid usubjid arm age bmibl race saffl ittfl agegr1

001 01 001-01-0001 Group 1 42 67.2 Black Y Y 18-59

001 01 001-01-0002 Group 1 66 61.3 Black Y Y 60+

001 01 001-01-0003 Group 1 66 63.9 Black Y Y 60+

001 01 001-01-0004 Group 1 64 30.6 Asian Y Y 60+

001 01 001-01-0005 Group 1 65 38.1 White Y N 60+

001 01 001-01-0006 Group 1 41 47.9 White Y Y 18-59

001 01 001-01-0007 Group 1 47 64.2 Black Y Y 18-59

001 01 001-01-0008 Group 1 55 75.3 Black Y Y 18-59

001 01 001-01-0009 Group 1 58 40.4 White Y Y 18-59

001 01 001-01-0010 Group 1 59 34.8 Black N N 18-59

001 01 001-01-0011 Group 2 38 32.1 White Y Y 18-59

001 01 001-01-0012 Group 2 70 22.7 Asian Y Y 60+

001 01 001-01-0013 Group 2 30 52.7 Black Y Y 18-59

001 01 001-01-0014 Group 2 22 28.5 White Y Y 18-59

001 01 001-01-0015 Group 2 72 68.1 Black Y N 60+

001 01 001-01-0016 Group 2 20 73.7 Black Y Y 18-59

001 01 001-01-0017 Group 2 60 45.8 White Y Y 60+

001 01 001-01-0018 Group 2 71 38.9 Asian Y Y 60+

001 01 001-01-0019 Group 3 66 27.5 White Y Y 60+

The summary and frequency listing of these data are in Table 2, Table 3 (Group 1 only), and Table 4,
(Group 2 only), respectively. These tables can verify the results in Table 9.

3

Table 2. The summary of continuous variables in ADSL for SAFFL = “Y” produced manually by the
MEANS procedure.

arm

N

Obs Variable N Mean Std Dev Median

Lower

Quartile

Upper

Quartile Minimum Maximum

Group 1 9 age

bmibl

9

9

56.00

54.32

10.32

15.43

58.00

61.30

47.00

40.40

65.00

64.20

41.00

30.60

66.00

75.30

Group 2 8 age

bmibl

8

8

47.88

45.31

22.73

18.48

49.00

42.35

26.00

30.30

70.50

60.40

20.00

22.70

72.00

73.70

Group 3 1 age

bmibl

1

1

66.00

27.50

.

.

66.00

27.50

66.00

27.50

66.00

27.50

66.00

27.50

66.00

27.50

Table 3. The frequency of AGEGR1 (a categorical variable) in ADSL for SAFFL = “Y” produced manually
by the FREQ procedure for GROUP 1.

agegr1 Frequency Percent

Cumulative

Frequency

Cumulative

Percent

18-59 5 55.56 5 55.56

60+ 4 44.44 9 100.00

Table 4. The frequency of RACE (a categorical variable) in ADSL for SAFFL = “Y” produced manually by
the FREQ procedure for GROUP 2.

race Frequency Percent

Cumulative

Frequency

Cumulative

Percent

Asian 2 25.00 2 25.00

Black 3 37.50 5 62.50

White 3 37.50 8 100.00

DIMENSION DATA SETS

The dimensions of the “matrix” are PAGE, SECTION, ROW, and COLUMN. The programmer does not
design the shells but follows it as a blueprint. Even when the order of rows is dynamic and determined by
the data, for instance, in a table that presents adverse events (AEs) by descending frequency, the
programmer is still following the shell (blueprint). The code in Appendix 1 provides a working example of
the data sets that associate an index with a label for the respective dimension.

Nesting occurs in the VALDS: Columns are nested in Rows, Rows are nested in Sections, and Sections
are nested in Pages. The following code creates the __LEVELS data set, the collection of all labels,
indices, and nesting (partially displayed in Table 5) using the MAC_TFL_DIMENSIONS macro (Appendix
2):

%mac_tfl_dimensions

 (pages_ds = __pages

 , sections_ds = __sections

 , rows_ds = __rows

 , columns_ds = __columns

) ;

4

Table 5. The __LEVEL data sets produced as a combination of the __PAGES, __SECTIONS, __ROWS,
and __COLUMNS data sets.

page_1 page_order_1 section_1 section_order_1 row_1 row_order_1 default column_label column

Safety Population 1 Race, n(%) 1 Race, n(%) 0 Group 1 1

Safety Population 1 Race, n(%) 1 Race, n(%) 0 Group 2 2

Safety Population 1 Race, n(%) 1 Race, n(%) 0 Group 3 3

Safety Population 1 Race, n(%) 1 Race, n(%) 0 Total 4

Safety Population 1 Race, n(%) 1 Asian 1 0 Group 1 1

Safety Population 1 Race, n(%) 1 Asian 1 0 Group 2 2

Safety Population 1 Race, n(%) 1 Asian 1 0 Group 3 3

Safety Population 1 Race, n(%) 1 Asian 1 0 Total 4

Safety Population 1 Race, n(%) 1 Black 2 0 Group 1 1

Safety Population 1 Race, n(%) 1 Black 2 0 Group 2 2

Safety Population 1 Race, n(%) 1 Black 2 0 Group 3 3

Safety Population 1 Race, n(%) 1 Black 2 0 Total 4

SNIPPED

Safety Population 1 Age (years) 2 Age (years) 0 Group 1 1

Safety Population 1 Age (years) 2 Age (years) 0 Group 2 2

Safety Population 1 Age (years) 2 Age (years) 0 Group 3 3

Safety Population 1 Age (years) 2 Age (years) 0 Total 4

Safety Population 1 Age (years) 2 n 1 0 Group 1 1

Safety Population 1 Age (years) 2 n 1 0 Group 2 2

Safety Population 1 Age (years) 2 n 1 0 Group 3 3

Safety Population 1 Age (years) 2 n 1 0 Total 4

Safety Population 1 Age (years) 2 Mean (SD) 2 Group 1 1

Safety Population 1 Age (years) 2 Mean (SD) 2 Group 2 2

Safety Population 1 Age (years) 2 Mean (SD) 2 Group 3 3

Safety Population 1 Age (years) 2 Mean (SD) 2 Total 4

Safety Population 1 Age (years) 2 Median 3 Group 1 1

Safety Population 1 Age (years) 2 Median 3 Group 2 2

Safety Population 1 Age (years) 2 Median 3 Group 3 3

Safety Population 1 Age (years) 2 Median 3 Total 4

SNIPPED

BIG N DATA SETS

Column header totals, that is “Big N” may vary by page. In many cases, column Big N values are the
denominator for frequency listings. In the case of summaries (mean, for instance), the difference
between the N of the section and the Big N indicate that subjects have missing values. The following
code generates the Big N totals for the Safety Population:

%mac_tfl_bign

 (in_ds = adsl

 , treat_group_var = arm

 , total = Total

 , dimension_ds = __columns

 , big_n_vars = saffl

 , big_n_where = saffl = "Y"

) ;

5

A similar macro call created the Big N values for the Intent-to-Treat population and the data sets were
concatenated via a SET statement to create the data set BIG_N (Table 6, code not shown, but available
upon request). Appendix 3 presents the code of MAC_U_BIGN.

 Table 6. The BIG N data set.

page_1 column_label column big_n

Intent-To-Treat Population Group 1 1 8

Intent-To-Treat Population Group 2 2 7

Intent-To-Treat Population Group 3 3 1

Intent-To-Treat Population Total 4 16

Safety Population Group 1 1 9

Safety Population Group 2 2 8

Safety Population Group 3 3 1

Safety Population Total 4 18

VARIABLE NAMES TO SECTION LABELS

Both macros to create the summary (CONtinuous data) and the frequency (CATegorical data) have the
options to create the section labels using a SAS System Format based on the variable name. The
following is and example of a FORMAT procedure to achieve this:

proc format ;

 value $ section_format

 "agegr1" = "Age Group, n(%)"

 "race" = "Race, n(%)"

 "age" = "Age (years)"

 "bmibl" = "Baseline BMI (kg/m2)"

 ;

run ;

“TURNING” THE DATA: CATEGORICAL DATA

Instead of calling a macro for each section (variable), the entire data set is “turned”, that is transposed.
This appears to be acceptable manipulation (programming) of analysis ready data. In this case each
datum or composite of datum, such as Mean and Standard Deviation, “Mean (SD)”, or frequency and
percent, “n (%)” requires only one (analytic) procedure. The exception is the use of ADSL to obtain the
dominator data, an acceptable derivation. The following is an example, though in the experience of the
author, unusual since one TF program typically creates one table. For example, even though one
program can easily create an output for each population for which ADSL (or another ADAM data set) has
a flag such as SAFFL and ITTFL, separate programs typically produce output for the separate tables.
The PAGE dimension is usually limited to one value and achieved by subsetting, not turning.

6

data ads_cat

 (drop = saffl

 ittfl

)

 ;

 set adsl

 (keep = usubjid

 agegr1

 race

 arm

 saffl

 ittfl

)

 ;

 length page_1 $ 200 ;

 if saffl = "Y"

 then

 do ;

 page_1 = "Safety Population" ;

 output ;

 end ;

 if ittfl = "Y"

 then

 do ;

 page_1 = "Intent-To-Treat Population" ;

 output ;

 end ;

run ;

THE MAC_TFL_ADS_CAT MACRO

Appendix 4 presents the MAC_TFL_ADS_CAT macro (ADS is Analytical Data Set). For the first
example of this paper, the following generates the frequency listing for the categorical data:

%mac_tfl_ads_cat

 (in_ds = ads_cat

 , variables = agegr1

 race

 , in_keep = arm

 page_1

 , section_format = $section_format.

 , total = Total

 , denom_on = a.page_1 = b.page_1

 and a.column_label = b.column_label

) ;

PRECISION

The number of decimal places required usually does not reflect the number of significant digits in the
original measurement in the field of clinical trials. Typically, this might rankle those with a background in
physical sciences, but it is not likely to affect biostatistical outcomes or interpretation (inferences). The
data set in Table 7 is an example of the precision (number of decimal places) a shell might demand. This
data set is used in the creation of the summary data (MAC_TFL_ADS_CON).

7

 Table 7. The precision of the respective variables
 and their summary measures.

section_1 row_1 format

Age (years) n 8.0

Age (years) mean 8.0

Age (years) median 8.0

Age (years) stddev 8.1

Age (years) min 8.0

Age (years) max 8.0

Age (years) q1 8.0

Age (years) q3 8.0

Baseline BMI (kg/m2) n 8.0

Baseline BMI (kg/m2) mean 8.1

Baseline BMI (kg/m2) median 8.1

Baseline BMI (kg/m2) stddev 8.2

Baseline BMI (kg/m2) min 8.1

Baseline BMI (kg/m2) max 8.1

Baseline BMI (kg/m2) q1 8.1

Baseline BMI (kg/m2) q3 8.1

THE MAC_TFL_ADS_CON MACRO

Appendix 5 presents the MAC_TFL_ADS_CON macro. An example call for this paper is:

%mac_tfl_ads_con

 (in_ds = ads_con

 , in_keep = arm

 page_1

 , variables = age

 bmibl

 , section_format = $section_format.

 , summary_stats = n

 mean

 stddev

 median

 q1

 q3

 min

 max

 , summary_rows = section

 n

 mean_p_sd_p

 median

 q1_q3

 min_max

 , precision_ds = __precision

 , precision_keys = section_1

 row_1

) ;

THE MAC_R_PSRC MACRO

Once the datum or composite of data are generated with, or rather for, associated labels for the
dimensions, for instance PAGE_1 = “Safety Population”, SECTION_1 = "Race, n(%)", and ROW_1 =

8

“Asian”, the macro MAC_R_PSRC (PSRC is Page, Section, Row, Column; Appendix 6) associates those
labels with their respective indices in the (structural) data sets presented earlier.
 Importantly, this macro can be used to create the matrix of all values defined in the data set and
establish their default value (presentation), in any. For instance, a level such as “Other” for race, might
be in the shell (in the Case Report Form), but not found in the data. The default value might be “0”. The
macro circumvents the cumbersome IF-THEN-ELSE approach that might handle this issues.

The following “pigeon holes” the data into their respective cells, then UPDATEs the Default data set with
the data (TFL_OUTSAS), replacing missing values with data, then UPDATEs the data with updated
Default data set:

%mac_r_psrc

 (out_ds = default

 , in_ds = __levels

 , in_by = page_order_1

 section_order_1

 row_order_1

 , val_var = default

 , hash_lookup = N

) ;

%mac_r_psrc

 (out_ds = tfl_outsas

 , in_ds = ctf_summary

 , levels_ds = __levels

 , val_var = value

) ;

data default ;

 update default

 tfl_outsas

 ;

 by page_order_1

 section_order_1

 row_order_1

 ;

run ;

data tfl_outsas ;

 update tfl_outsas

 default

 ;

 by page_order_1

 section_order_1

 row_order_1

 ;

run ;

Table 8 shows a few rows of the DEFAULT data set (upper panel), the DEFAULT data set UPDATEd
with the TFL_OUTSAS data (middle panel), and the TFL_OUTSAS data set (bottom panel) UPDATEd
with the intermediate data set in the middle panel:

 Table 8. The results of careful updates, including interations, of the DEFAULT and
 TFL_OUTSAS to obtain levels and defaults for data not present in the ADSL.

col1 col2 col3 col4 page_1 page_order_1 section_1 section_order_1 row_1 row_order_1

 Safety Population 1 Race, n(%) 1 Race, n(%) 0

0 0 0 0 Safety Population 1 Race, n(%) 1 Asian 1

0 0 0 0 Safety Population 1 Race, n(%) 1 Black 2

0 0 0 0 Safety Population 1 Race, n(%) 1 White 3

0 0 0 0 Safety Population 1 Race, n(%) 1 Other 4

0 0 0 0 Safety Population 1 Race, n(%) 1 Missing 5

 Safety Population 1 Race, n(%) 1 Race, n(%) 0

1 (11.1%) 2 (25.0%) 0 3 (16.7%) Safety Population 1 Race, n(%) 1 Asian 1

5 (55.6%) 3 (37.5%) 0 8 (44.4%) Safety Population 1 Race, n(%) 1 Black 2

3 (33.3%) 3 (37.5%) 1 (100.0%) 7 (38.9%) Safety Population 1 Race, n(%) 1 White 3

0 0 0 0 Safety Population 1 Race, n(%) 1 Other 4

0 0 0 0 Safety Population 1 Race, n(%) 1 Missing 5

 Safety Population 1 Race, n(%) 1 Race, n(%) 0

 Safety Population 1 Race, n(%) 1 Race, n(%) 0

1 (11.1%) 2 (25.0%) 0 3 (16.7%) Safety Population 1 Race, n(%) 1 Asian 1

5 (55.6%) 3 (37.5%) 0 8 (44.4%) Safety Population 1 Race, n(%) 1 Black 2

3 (33.3%) 3 (37.5%) 1 (100.0%) 7 (38.9%) Safety Population 1 Race, n(%) 1 White 3

0 0 0 0 Safety Population 1 Race, n(%) 1 Other 4

0 0 0 0 Safety Population 1 Race, n(%) 1 Missing 5

9

Whether a level is not present in the data or not present in a given group, it appears in the final table with
its appropriate default value.

THE RESULTING TABLES

Table 9 presents the first table in the output. Both the derivations and the cells (order) can be checked
against the data presented above. The code in Appendix 7 generates this table using the VALDS model
and associated macro presented by Viel1,2. Notably, adding or deleting columns (such as Group 1 + 2) or
rearranging the table is a simple as updating the structural data sets (such as __COLUMNS) and adding
the group to the input data set (with care needed for the correct total values.

Table 9. The resulting table.

 Safety Population

Group 1

(N = 9)

Group 2

(N = 8)

Group 3

(N = 1)

Total

(N = 18)

Race, n(%)

Asian 1 (11.1%) 2 (25.0%) 0 3 (16.7%)

Black 5 (55.6%) 3 (37.5%) 0 8 (44.4%)

White 3 (33.3%) 3 (37.5%) 1 (100.0%) 7 (38.9%)

Other 0 0 0 0

Missing 0 0 0 0

Age (years)

n 9 8 1 18

Mean (SD) 56 (10.3) 48 (22.7) 66 (N/A) 53 (17.0)

Median 58 49 66 59

Q1, Q3 47, 65 26, 71 66, 66 41, 66

Min, Max 41, 66 20, 72 66, 66 20, 72

Age Group, n(%)

18-59 5 (55.6%) 4 (50.0%) 0 9 (50.0%)

60+ 4 (44.4%) 4 (50.0%) 1 (100.0%) 9 (50.0%)

Baseline BMI (kg/m2)

n 9 8 1 18

Mean (SD) 54.3 (15.43) 45.3 (18.48) 27.5 (N/A) 48.8 (17.35)

Median 61.3 42.3 27.5 46.8

Q1, Q3 40.4, 64.2 30.3, 60.4 27.5, 27.5 32.1, 64.2

Min, Max 30.6, 75.3 22.7, 73.7 27.5, 27.5 22.7, 75.3

CAPTURING THE SAS CODE GENERATED BY THE MACRO OR DEBUGGING

The macro MAC_DEBUG_MFILE3 can be used to capture the (unformatted) SAS code generated by a
macro. This may help study the macro or investigate errors or other issues. Some regulatory agencies
may not want externally defined SAS macros called in programs.

%mac_debug_mfile

 (mcall = mac_tfl_ads_cat

 (in_ds = ads_cat

 , variables = agegr1

 race

 , in_keep = arm

 page_1

 , section_format = $section_format.

 , total = Total

 , denom_on = a.page_1 = b.page_1

 and a.column_label = b.column_label

)

) ;

10

If run interactively in Windows, then the macro copies the generated SAS code to the clipboard. Typing
Ctrl-V in a text editor will produce the following (unformatted) code:

CONCLUSION

This paper contributes to the automation and standardization of table and listings programs by providing
macros that reduce the logic requirements of arranging derived data into pages, sections, rows, and
columns. This allows the programmer to concentrate on the derivations, including accuracy and
efficiency. The data sets that assign “structural” aspects, such as the column number into which a given
group is assigned can be provided to a programming group, once validated. Updates, changes, and
corrections, especially re-arrangements are reduced to changing the numbers associated with labels
without many coding changes, especially when used in conjunction with the MAC_R_REPORT macro.

REFERENCES

1 Viel, KR. “A Standard Data Set Format for the Validation of Tables and Listings in Regulatory
Submissions for Clinical Trials.” Conference Proceedings: PHUSE US Connect 2023. PP17. Available at
https://phuse.s3.eu-central-1.amazonaws.com/Archive/2023/Connect/US/Florida/PAP_PP17.pdf and
https://phuse.s3.eu-central-1.amazonaws.com/Archive/2023/Connect/US/Florida/POS_PP17.pdf.

2 Viel, KR. “A Standard Dataset Format in Regulatory Submissions for Clinical Trials: Automatic Creation
of Headers, Headers of Headers, and Footnotes." Conference Proceedings: PHUSE US Connect 2024.
SM04. Available at https://phuse.s3.eu-central-
1.amazonaws.com/Archive/2024/Connect/US/Bethesda/PAP_SM04.pdf

3 Viel, K. 2016. "Capturing Macro Code when Debugging in the Windows Environment: The Power of
MFILE and the Simplicity of Pasting." Proceedings of the PharmaSUG 2016 Conference, Denver, CO:
PharmaSUG. https://www.pharmasug.org/proceedings/2016/TT/PharmaSUG-2016-TT17.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Kevin R. Viel, Ph.D.
Navitas Data Sciences
kevin.viel@navitaslifesciences.com
www.navitasdatasciences.com

Histonis, Incorporated
kviel@histonis.org

Any brand and product names are trademarks of their respective companies.

https://www.pharmasug.org/proceedings/2016/TT/PharmaSUG-2016-TT17.pdf

11

Appendix 1. The structural data sets that assign indices (numbers) to labels for each dimension of the
 “matrix”.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

data __pages ;

 length page_1 $ 200 ;

 do page_1 = "Safety Population"

 , "Intent-To-Treat Population"

 ;

 page_order_1 + 1 ;

 output ;

 end ;

run ;

/**********/

data __sections ;

 length section_1 $ 200 ;

 section_1 = "Race, n(%)" ;

 section_order_1 = 1 ;

 output ;

 section_1 = "Age (years)" ;

 section_order_1 + 1 ;

 output ;

 section_1 = "Age Group, n(%)" ;

 section_order_1 + 1 ;

 output ;

 section_1 = "Baseline BMI (kg/m2)" ;

 section_order_1 + 1 ;

 output ;

run ;

/**********/

data __rows ;

 length section_1

 row_1

 default $ 200

 ;

 section_1 = "Race, n(%)" ;

 row_1 = section_1 ;

 row_order_1 = 0 ;

 output ;

 default = "0" ;

 row_1 = "Asian" ;

 row_order_1 + 1 ;

 output ;

 row_1 = "Black" ;

 row_order_1 + 1 ;

 output ;

 row_1 = "White" ;

 row_order_1 + 1 ;

 output ;

 row_1 = "Other" ;

 row_order_1 + 1 ;

 output ;

 row_1 = "Missing" ;

 row_order_1 + 1 ;

 output ;

 /***/

 section_1 = "Age Group, n(%)" ;

 row_1 = section_1 ;

 row_order_1 = 0 ;

 default = " " ;

 output ;

 default = "0" ;

 row_1 = "18-59" ;

 row_order_1 + 1 ;

 output ;

 row_1 = "60+" ;

 row_order_1 + 1 ;

 output ;

 do section_1 = "Age (years)"

 , "Baseline BMI (kg/m2)"

 ;

 row_1 = section_1 ;

 row_order_1 = 0 ;

 default = " " ;

 output ;

 default = "0" ;

 do row_1 = "n"

 , "Mean (SD)"

 , "Median"

 , "Q1, Q3"

 , "Min, Max"

 ;

 row_order_1 + 1 ;

 output ;

 default = " " ;

 end ;

 end ;

run ;

/**********/

data __columns ;

 length column_label $ 200 ;

 column_label = "Group 1" ;

 column = 1 ;

12

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

 output ;

 column_label = "Group 2" ;

 column + 1 ;

 output ;

 column_label = "Group 3" ;

 column + 1 ;

 output ;

 column_label = "Total" ;

 column + 1 ;

 output ;

run ;

proc sql

 noprint ;

 select max(column)

 into : num_of_cols separated by ""

 from __columns

 ;

quit ;

13

Appendix 2. The MAC_TFL_DIMENSIONS macro.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

%macro mac_tfl_dimensions

 (pages =

 , sections_rows =

 , columns =

 , dimensions_code = %str()

 , pages_ds = %str()

 , sections_ds = %str()

 , rows_ds = %str()

 , columns_ds = %str()

 , help = N

) ;

 %if &help. = Y

 %then

 %do ;

 %let mprint_orig = %sysfunc(getoption(mprint)) ;

 options nomprint ;

 skip ;

 skip ;

 %put __ ;

 %put Purpose of program: This macro will take the dimensions data sets and create __LEVELS, which provides ;

 %put %str()the labels and their respective order variables for the tables and listing, i.e the ;

 %put %str()"shell" (multiple dimensional matrix) with cells index by the order variables. ;

 skip ;

 %put Macro Parameter Description ;

 %put _________________ __ ;

 %put pages = The list of pages delimited by #, with the first page prefixed with #. The page order ;

 %put %str()is the order of apparence in this list. ;

 %put sections_rows = The sections and rows ed by #, with the first section prefixed with #. The rows are ;

 %put %str()nested in sections and delimated by |, with the first row prefixed with |. The order ;

 %put %str()is the order of apparence in this list. ;

 %put columns = The list of columns delimited by #, with the first column prefixed with #. The column order ;

 %put %str()is the order of apparence in this list. ;

 %put dimensions_code = Optional code run before the cartesian join of the dimension data sets. ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put pages_ds = The pages data set (PAGE_1, PAGE_ORDER_1) ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put sections_ds = The sections data set (SECTION_1, SECTION_ORDER_1) ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put rows_ds = The rows data set (ROW_1, ROW_ORDER_1) ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put columns_ds = The Columns data set (COLUMN_LABEL, COLUMN) ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put __ ;

 %put End of help ;

 options &mprint_orig. ;

 %goto __END ;

 %end ;

 %global num_of_cols ;

 /***/

 %if &pages_ds. = %str()

 %then

 %do ;

 data __pages

 (drop = r_s) ;

 length r_s $ 30000

 page_1 $ 200

 page_order_1 8

 ;

 r_s = %unquote(%str(%')&pages.%str(%')) ;

 do page_order_1 = 1 to countc(r_s , "#") ;

 page_1 = strip(scan(r_s , page_order_1 , "#")) ;

 output ;

 end ;

 run ;

 %let pages_ds = __pages ;

 %end ;

 /****/

 %if §ions_ds. = %str()

 or &rows_ds. = %str()

 %then

 %do ;

 data %if §ions_ds. = %str()

 %then

 __sections

 (keep = section:)

 ;

 %if &rows_ds. = %str()

 %then

 __rows

 (keep = section:

 row:

 default

)

 ;

 ;

 length r_s $ 30000

 text $ 10000

 section_1

 %if &rows_ds. = %str()

 %then row_1

 default

 ;

 $ 200

 ;

14

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

 r_s = %unquote(%str(%')§ions_rows.%str(%')) ;

 do section_order_1 = 1 to countc(r_s , "#") ;

 text = scan(r_s , section_order_1 , "#") ;

 section_1 = strip(scan(text , 1 , "|")) ;

 %if §ions_ds. = %str() %then output __sections %str(;) ;

 %if &rows_ds. = %str()

 %then

 %do ;

 do row_order_1 = 1 to countc(text , "|") ;

 row_1 = strip(scan(scan(text , row_order_1 + 1 , "|") , 1 , "~")) ;

 default = strip(scan(scan(text , row_order_1 + 1 , "|") , 2 , "~")) ;

 output __rows ;

 end ;

 %end ;

 end ;

 run ;

 %if §ions_ds. = %str() %then %let sections_ds = __sections ;

 %if &rows_ds. = %str() %then %let rows_ds = __rows ;

 %end ; /* END OF sections_ds = str() or rows_ds = str() */

 /****/

 %if &columns_ds. = %str()

 %then

 %do ;

 data __columns

 (drop = r_s) ;

 length r_s $ 1000

 column_label $ 200

 ;

 r_s = %unquote(%str(%')&columns.%str(%')) ;

 do column = 1 to countc(r_s , "#") ;

 column_label = strip(scan(r_s , column , "#")) ;

 output ;

 end ;

 call symputx("num_of_cols"

 , put(column , 8.0)

) ;

 run ;

 %let columns_ds = __columns ;

 %end ;

 &dimensions_code.

 /*************/

 /* Cartesian */

 /*************/

 proc sql ;

 create table __levels as

 select a.*

 , b.*

 , c.*

 from &pages_ds. as a

 , (select aa.*

 , bb.row_1

 , bb.row_order_1

 , bb.default

 from §ions_ds. as aa

 , &rows_ds. as bb

 where aa.section_1 = bb.section_1

) as b

 , &columns_ds. as c

 order by a.page_order_1

 , b.section_order_1

 , b.row_order_1

 , c.column

 ;

 quit ;

 %__END:

%mend mac_tfl_dimensions ;

15

Appendix 3. The MAC_TFL_BIGN macro.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

%macro mac_tfl_bign

 (in_ds =

 , treat_group_var =

 , total = %str()

 , dimension_ds = %str()

 , dimension_label = column_label

 , dimension_order = column

 , big_n_vars = %str()

 , big_n_where = %str()

 , help = N

) ;

 %if &help. = Y

 %then

 %do ;

 %let mprint_orig = %sysfunc(getoption(mprint)) ;

 options nomprint ;

 skip ;

 skip ;

 %put __ ;

 %put Purpose of program: This program will compute the Big N (column header or section header for instance) values for a given ;

 %put %str()treatment variable (column), column data set, and optional subsetting condition. ;

 skip ;

 %put Macro Parameter Description ;

 %put _________________ __ ;

 %put in_ds = Input data set. ;

 %put treat_group_var = Variable defining the groups, i.e. the columns. ;

 %put total = The name of the summary column. If this value is not populated, then the column ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put dimension_ds = The data set that contains the dimension labels and their respective ordinal numbers. ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put big_n_vars = Additional variables to keep from IN_DS (for BIG_N_WHERE). ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put big_n_where = Options WHERE data set option to IN_DS. ;

 %put %str()Default: %nrstr(%%)str%str(()). ;

 %put __ ;

 %put End of help ;

 options &mprint_orig. ;

 %goto __END ;

 %end ;

 /**************** Big N *********************/

 data big_n

 %if %nrbquote(&big_n_vars.) ne %str() %then (drop = &big_n_vars.) ;

 ;

 length &dimension_label. $ 200 ;

 set &in_ds.

 (keep = studyid

 usubjid

 &treat_group_var.

 &big_n_vars.

 rename = (&treat_group_var. = &dimension_label.)

 %if %nrbquote(&big_n_where.) ne %str()

 %then where = (&big_n_where.) ;

)

 ;

 %if &total. ne %str()

 %then

 %do ;

 output ;

 &dimension_label. = "&total." ;

 output ;

 %end ;

 run ;

 proc sql

 undo_policy = none ;

 create table big_n as

 select a.*

 , case when b.&dimension_label. ne " " then b.big_n

 else 0

 end as big_n

 from &dimension_ds. as a

 left join (select &dimension_label.

 , count(distinct catx("/"

 , studyid

 , usubjid

)

) as big_n

 from big_n

 group by &dimension_label.

) as b

 on a.&dimension_label. = b.&dimension_label.

 order by a.&dimension_order.

 ;

 quit ;

 %__END:

%mend mac_tfl_bign ;

16

Appendix 4. The MAC_TFL_ADS_CAT macro.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

%macro mac_tfl_ads_cat

 (dimensions = page_1

 section_1

 row_1

 column_label

 , in_ds =

 , in_keep = %str()

 , out_keep = %str()

 , variables =

 , rename = arm = column_label

 , where = %str()

 , code = %str()

 , section_format = $200.

 , subject_id = usubjid

 , total = Total

 , denom_on = a.column_label = b.column_label

 , include_missing = N

 , debug = N

) ;

 data ads_cat

 (keep = &subject_id.

 &dimensions.

 value

 %if %nrbquote(&out_keep.) ne %str() %then &out_keep. ;

)

 ;

 length &dimensions.

 value $ 200

 ;

 set &in_ds.

 (keep = &subject_id.

 &variables.

 %if %nrbquote(&in_keep.) ne %str() %then &in_keep. ;

 rename = (&rename.)

 %if %nrbquote(&where.) ne %str()

 %then where = (&where.) ;

)

 ;

 &code.

 array __v (*)

 &variables.

 ;

 do _n_ = 1 to dim(__v) ;

 row_1 = __v(_n_) ;

 section_1 = put(lowcase(vname(__v(_n_))) , §ion_format.) ;

 value = "Y" ;

 output ;

 end ;

 run ;

 %if &total. ne %str()

 %then

 %do ;

 data ads_cat ;

 set ads_cat ;

 output ;

 column_label = "&total." ;

 output ;

 run ;

 %end ;

 /******/

 %let dimension_number = %eval(%sysfunc(countc(%nrbquote(%sysfunc(compbl(&dimensions.))) , %str())) + 1) ;

 ods listing close ;

 proc freq

 data = ads_cat ;

 ods output CrossTabFreqs = ctf

 (keep = &dimensions.

 value

 type

 frequency

 where = (_type_ = "%sysfunc(repeat(1 , &dimension_number.))"

 and value = "Y"

)

)

 ;

 tables %sysfunc(prxchange(s/\s+/%str(*)/

 , -1

 , &dimensions.

)

)

 * value

 / nocol

 norow

 nopercent

 %if &include_missing. = Y %then missing ;

 ;

 run ;

 ods output close ;

 ods listing ;

 %if &debug. = N

 %then

 %do ;

 proc datasets

17

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

 library = WORK

 nolist

 ;

 delete ads_cat ;

 quit ;

 %end ;

 proc sql ;

 alter table ctf

 drop value

 , _type_

 ;

 quit ;

 proc sql

 undo_policy = none

 ;

 create table ctf as

 select a.*

 , case when nmiss(a.frequency

 , b.big_n

) = 0

 and b.big_n ne 0

 then a.frequency / b.big_n * 100

 else .

 end as percent

 from ctf as a

 left join big_n as b

 on &denom_on.

 ;

 quit ;

 %if &debug. = N

 %then

 %do ;

 proc datasets

 library = WORK

 nolist

 ;

 delete big_n ;

 quit ;

 %end ;

 data ctf

 (drop = frequency

 percent

 __:

)

 ;

 length value $ 200

 __1

 __2 $ 20

 ;

 set ctf ;

 if frequency ne .

 then __1 = put(frequency , 8.0) ;

 if percent ne .

 then __2 = put(percent , 8.1) ;

 if cmiss(__1

 , __2

) = 0

 then

 do ;

 if __2 = put(0 , 8.1)

 then value = strip(__1) ;

 else value = cat(strip(__1)

 , " ("

 , strip(__2)

 , "%)"

) ;

 end ;

 run ;

 proc sort

 data = ctf ;

 by %sysfunc(prxchange(s/column_label//i

 , -1

 , &dimensions.

)

)

 ;

 run ;

%mend mac_tfl_ads_cat ;

18

Appendix 5. The MAC_TFL_ADS_CON macro.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

%macro mac_tfl_ads_con

 (dimensions = page_1

 section_1

 column_label

 , in_ds =

 , in_keep = %str()

 , out_keep = %str()

 , variables =

 , rename = arm = column_label

 , where = %str()

 , code = %str()

 , section_format = $200.

 , transpose_doloop_code = %str()

 , summary_stats = n

 mean

 stddev

 median

 q1

 q3

 , summary_stats_add = %str()

 , summary_rows = section

 n

 mean_p_sd_p

 median_p_q1_q3_p

 , summary_rows_add = %str()

 , subject_id = usubjid

 , total = Total

 , class = page_1

 section_1

 column_label

 , precision_ds = %str()

 , precision_keys = %str()

 , precision_format_var = format

 , not_applicable = N/A

 , debug = N

) ;

 /******/

 data ads_con

 (keep = &subject_id.

 &dimensions.

 value

 %if %nrbquote(&out_keep.) ne %str() %then &out_keep. ;

)

 ;

 length &dimensions. $ 200

 ;

 set &in_ds.

 (keep = &subject_id.

 &variables.

 %if %nrbquote(&in_keep.) ne %str() %then &in_keep. ;

 rename = (&rename.)

 %if %nrbquote(&where.) ne %str()

 %then where = (&where.) ;

)

 ;

 &code.

 array __v (*)

 &variables.

 ;

 do _n_ = 1 to dim(__v) ;

 %if %nrbquote(&transpose_doloop_code.) = %str()

 %then

 %do ;

 section_1 = put(lowcase(vname(__v(_n_))) , §ion_format.) ;

 value = __v(_n_) ;

 %end ;

 %else

 %do ;

 &transpose_doloop_code.

 %end ;

 output ;

 end ;

 run ;

 %if &precision_ds. = %str()

 %then

 %do ;

 %mac_u_precision

 (in_ds = ads_con

 , out_ds = precision

 , group = &precision_keys.

 , var = value

 , varu = %str()

 , format = best32.

 , precision_var = format

) ;

 %end ;

 %if &total. ne %str()

 %then

 %do ;

 data ads_con ;

 set ads_con ;

 output ;

 column_label = "&total." ;

 output ;

 run ;

 %end ;

 /****************/

19

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

 ods listing close ;

 proc means

 data = ads_con

 &summary_stats.

 &summary_stats_add.

 stackodsoutput

 ;

 ods output summary = summary ;

 class &class. ;

 var value ;

 run ;

 ods output close ;

 ods listing ;

 %if &debug. = N

 %then

 %do ;

 proc datasets

 library = WORK

 nolist

 ;

 delete ads_con ;

 quit ;

 %end ;

 /*****/

 %if %nrbquote(&precision_keys.) ne %str()

 %then

 %do ;

 data _null_ ;

 call symput("precision_keys"

 , cat('"'

 , prxchange('s/\s+/" , "/'

 , -1

 , compress(compress("&precision_keys." , '"') , "'")

)

 , '"'

)

) ;

 run ;

 data _null_ ;

 call symput("precision_keys2"

 , cats(prxchange("s/\s+/= /"

 , -1

 , compress(%unquote(%str(%')&precision_keys.%str(%')) , '",')

)

 , "="

)

) ;

 run ;

 %end ;

 /***/

 data summary

 (keep = &dimensions.

 row_1

 value

)

 ;

 %if &precision_ds. ne %str()

 %then

 %do ;

 if 0 then set &precision_ds. ;

 if _n_ = 1

 then

 do ;

 dcl hash __format

 (dataset: "&precision_ds.")

 ;

 __rc = __format.definekey

 (&precision_keys.) ;

 __rc = __format.definedata

 ("&precision_format_var.") ;

 __rc = __format.definedone() ;

 end ;

 %end;

 set summary

 (drop = nobs

 control

 variable

)

 ;

 length row_1

 value $ 200

 __1

 __2

 %if %sysfunc(prxmatch(/\bmedian_p_min_max_p\b/i , &summary_rows.))

 or %sysfunc(prxmatch(/\bmedian_p_q1_q3_p\b/i , &summary_rows.))

 %then __3 ;

 $ 100

 ;

 array __sumstats

 (*)

 &summary_stats.

 &summary_stats_add.

 ;

 array __sumstatsf

 (*)

 $ 100

20

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

 __%sysfunc(prxchange(s/ / __/

 , -1

 , %sysfunc(compbl(&summary_stats. &summary_stats_add.))

)

)

 ;

 do _n_ = 1 to dim(__sumstats) ;

 row_1 = lowcase(vname(__sumstats(_n_))) ;

 __rc = __format.find() ;

 if __rc ne 0

 then

 do ;

 put "W" "ARNING: "

 &precision_keys2.

 ;

 &precision_format_var. = "8.0" ;

 end ;

 if __sumstats(_n_) ne .

 then

 do ;

 __sumstatsf(_n_) = left(putn(__sumstats(_n_) , &precision_format_var.)) ;

 if prxmatch("/-0(?:\.0+)?$/" , strip(__sumstatsf(_n_))) then __sumstatsf(_n_) = substr(__sumstatsf(_n_) , 2) ;

 end ;

 end ;

 %if %sysfunc(prxmatch(/\bsection\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = section_1 ;

 value = " " ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bn\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "n" ;

 value = __n ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bsection_n\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = section_1 ;

 value = __n ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bmean_p_sd_p\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "Mean (SD)" ;

 if mean ne . then __1 = __mean ;

 if stddev ne . then __2 = __stddev ;

 else __2 = "¬_applicable." ;

 value = catx(" "

 , __1

 , cats("("

 , __2

 , ")"

)

) ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bmean_p_pm_stderr_p\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "Mean (+/-SEM)" ;

 if mean ne . then __1 = __mean ;

 if stderr ne .

 then

 do ;

 __2 = __stderr ;

 value = catx(" "

 , __1

 , cats("(+/-"

 , __2

 , ")"

)

) ;

 end ;

 else value = catx(" "

 , __1

 , "(¬_applicable.)"

) ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bmean\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "Mean" ;

 value = __mean ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bsd\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "SD" ;

 if stddev ne . then value = __stddev ;

 else value = "¬_applicable." ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bmedian_p_min_max_p\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "Median (Min, Max)" ;

 if median ne . then __1 = __median ;

21

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416
417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

 else __1 = " " ;

 if min ne . then __2 = __min ;

 else __2 = " " ;

 if max ne . then __3 = __max ;

 else __3 = " " ;

 value = cat(strip(__1)

 , " ("

 , strip(__2)

 , ", "

 , strip(__3)

 , ")"

) ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bmedian_p_q1_q3_p\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "Median (Q1, Q3)" ;

 if median ne . then __1 = __median ;

 else __1 = " " ;

 if q1 ne . then __2 = __q1 ;

 else __1 = " " ;

 if q3 ne . then __3 = __q3 ;

 else __3 = " " ;

 value = cat(strip(__1)

 , " ("

 , strip(__2)

 , ", "

 , strip(__3)

 , ")"

) ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bmedian\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "Median" ;

 if median ne . then value = __median ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bp_min_max_p\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "(Min, Max)" ;

 if min ne . then __1 = __min ;

 else __1 = " " ;

 if max ne . then __2 = __max ;

 else __2 = " " ;

 value = cat(" ("

 , strip(__1)

 , ", "

 , strip(__2)

 , ")"

) ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bmin_max\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "Min, Max" ;

 if min ne . then __1 = __min ;

 else __1 = " " ;

 if max ne . then __2 = __max ;

 else __2 = " " ;

 value = cat(strip(__1)

 , ", "

 , strip(__2)

) ;

 output ;

 %end ;

 %if %sysfunc(prxmatch(/\bq1_q3\b/i , &summary_rows.))

 %then

 %do ;

 row_1 = "Q1, Q3" ;

 if q1 ne . then __1 = __q1 ;

 else __1 = " " ;

 if q3 ne . then __2 = __q3 ;

 else __2 = " " ;

 value = cat(strip(__1)

 , ", "

 , strip(__2)

) ;

 output ;

 %end ;

 run ;

 proc sort

 data = summary ;

 by %sysfunc(prxchange(s/column_label//i

 , -1

 , &dimensions.

)

)

 row_1

 ;

 run ;

%mend mac_tfl_ads_con ;

22

Appendix 6. The MAC_R_PSRC macro.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

%macro mac_r_psrc

 (out_ds =

 , in_ds =

 , in_by = page_1

 section_1

 row_1

 , levels_ds = __levels

 , levels = page_order_1

 section_order_1

 row_order_1

 , column_hash_key = page_1

 , val_var = value

 , hash_lookup = Y

) ;

 %if &hash_lookup. = Y

 and %nrbquote(&column_hash_key.) ne %str()

 and (%sysfunc(indexc(%nrbquote(&column_hash_key.) , %str(%'%"))) = 0

 or (%sysfunc(indexc(%nrbquote(&column_hash_key.) , %str()))

 and %sysfunc(indexc(%nrbquote(&column_hash_key.) , %str(,))) = 0

)

)

 %then

 %do ;

 %let column_hash_key = %qsysfunc(compress(&column_hash_key. , %str(%'%"))) ;

 data _null_ ;

 call symput("column_hash_key"

 , cats('"'

 , prxchange('s/\s+/" , "/'

 , -1

 , "&column_hash_key."

)

 , '"'

)

) ;

 stop ;

 run ;

 %end ;

 /***/

 data &out_ds.

 (drop = column_label

 column

 keep = page_:

 section_:

 row_:

 col:

) ;

 %if &hash_lookup. = Y

 %then

 %do ;

 if 0 then set &levels_ds. ;

 if _n_ = 1

 then

 do ;

 /* (page) label to page_order_n */

 declare hash l2pn

 () ;

 __rc = l2pn.DefineKey

 ("page_1") ;

 __rc = l2pn.DefineData

 ("page_order_1") ;

 __rc = l2pn.DefineDone() ;

 /* (section) label to section_order_n */

 declare hash l2sn

 () ;

 __rc = l2sn.DefineKey

 ("section_1") ;

 __rc = l2sn.DefineData

 ("section_order_1") ;

 __rc = l2sn.DefineDone() ;

 /* (row) label to row_order_1 */

 declare hash l2r1

 () ;

 __rc = l2r1.DefineKey

 ("page_1"

 , "section_1"

 , "row_1"

) ;

 __rc = l2r1.DefineData

 ("row_order_1") ;

 __rc = l2r1.DefineDone() ;

 /* (column) label to column (number) */

 declare hash l2c

 () ;

 __rc = l2c.DefineKey

 (%if %nrbquote(&column_hash_key.) ne %str()

 %then &column_hash_key. , ;

 "column_label"

) ;

 __rc = l2c.DefineData

 ("column") ;

 __rc = l2c.DefineDone() ;

 do until (end1) ;

 set &levels_ds.

 end = end1

 ;

 by &levels. ;

23

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

 if first.page_order_1 then __rc = l2pn.ref() ;

 if first.section_order_1 then __rc = l2sn.ref() ;

 if first.row_order_1 then __rc = l2r1.ref() ;

 __rc = l2c.ref() ;

 end ;

 /*********/

 call missing(page_order_1

 , page_1

 , section_order_1

 , section_1

 , row_order_1

 , row_1

 , column

 , column_label

) ;

 end ; /* END OF _n_ = 1 */

 %end ; /* END OF hash_lookup = Y */

 array col(&num_of_cols.) $ 200 ;

 do until (last.%scan(&in_by. , -1 , %str())) ;

 set &in_ds. ;

 by &in_by. ;

 /***/

 %if &hash_lookup. = Y

 %then

 %do ;

 __rc = l2pn.find() ;

 if __rc ne 0

 then put "W" "ARNING: l2pn "

 page_1=

 ;

 __rc = l2sn.find() ;

 if __rc ne 0

 then put "W" "ARNING: l2sn "

 section_1=

 ;

 __rc = l2r1.find() ;

 if __rc ne 0

 then put "W" "ARNING: l2r1 "

 page_1=

 section_1=

 row_1=

 ;

 __rc = l2c.find() ;

 if __rc ne 0

 then put "W" "ARNING: l2c "

 page_1=

 section_1=

 column_label=

 ;

 if __rc = 0 then col(column) = &val_var. ;

 %end ;

 %else col(column) = &val_var. %str(;) ;

 end ;

 run ;

 proc sort

 data = &out_ds. ;

 by page_order_1

 section_order_1

 row_order_1

 ;

 run ;

%mend mac_r_psrc ;

24

Appendix 7. An example of a REPORT_DEFINE_OPTIONS data set and a call to MAC_R_REPORT.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

data report_define_options ;

 length page_1 $ 200

 variable $ 32

 define_options $ 200

 cellwidth $ 10

 ;

 do page_1 = "Safety Population"

 , "Intent-To-Treat Population"

 ;

 order = 0 ;

 cellwidth = " " ;

 /***/

 define_options = "order order = data noprint" ;

 do variable = "page_order_1"

 , "page_1"

 , "section_order_1"

 , "row_order_1"

 ;

 order + 1 ;

 output ;

 end ;

 /***/

 variable = "row_1" ;

 order + 1 ;

 define_options = compbl('" "

 order

 style (column) = { cellwidth = 30%

 just = l

 vjust = top

 }

 style (header) = { just = l }

 '

) ;

 output ;

 /***/

 define_options = " " ;

 cellwidth = "15%" ;

 do _n_ = 1 to 4 ;

 order + 1 ;

 variable = cats("col" , put(_n_ , 8.0)) ;

 output ;

 end ;

 end ; /* CYCLED THROUGH page_1 */

run ;

proc sort

 data = tfl_outsas ;

 by page_order_1

 type_order

 descending header_order

 section_order_1

 row_order_1

 ;

run ;

/********************/

options nobyline ;

title j = c "#byval(page_1)" ;

ods listing close ;

ods rtf

 file = "&path.\tfl_outsas.rtf"

 ;

%mac_r_report

 (in_ds = tfl_outsas

 , page_by_vars = page_1

 , num_of_cols = &num_of_cols.

 , report_define_options_ds = report_define_options

 , report_options = style(report) = { width = 100%

 frame = hsides

 rules = groups

 cellpadding = 1pt

 cellspacing = 0pt

 borderwidth = 1

 fontfamily = "Courier New"

 fontsize = 9pt

 backgroundcolor = white

 }

 style(header) = { backgroundcolor = white

 fontweight = medium

 }

 style(column) = { just = c

 vjust = m

 backgroundcolor = white

 }

 missing

 , code_after_define = compute before section_order_1

 / style = { height = 18pt }

 ;

 line " " ;

 endcomp ;

 compute row_1 ;

 if row_order_1 > 0

 then call define (_col_

 %str(,) "style"

 %str(,) "style = { leftmargin = 1% }"

) ;

25

112

113

114

115

116

117

118

119

120

121

 endcomp ;

 , report_by = page_1

) ;

ods rtf close ;

ods listing ;

title " " ;

footnote ;

