
1

PharmaSUG 2024 - Paper SD-426

Shift gears with 'gt': Finely tuned clinical reporting in R using "gt" and "gt
summary" packages

Raj Chennamaneni, Sudhir Kedare and Jagan Mohan Achi, Jazz Pharmaceuticals Inc

ABSTRACT
Efforts are underway to use open-source technologies like R and Python for FDA regulatory submission.
Based on ongoing initiatives with FDA, there is a strong likelihood that FDA will embrace regulatory
submissions utilizing open-source technologies along with SAS®. There are numerus existing and
emerging packages in R for presenting data in tabular format. This paper will focus on {gt} and its
extension {gt summary} package. "gt" package framework uses table header, stub, column labels,
spanner column labels, table body and table footer components to create summary reports. We will use
these components to demonstrate the ease and flexibility of developing clinical reports. Furthermore, we
will leverage "gt summary package" to generate descriptive statistic tables, efficacy outputs, inline tables,
and a few custom tables.

INTRODUCTION

With the growing popularity of open-source technologies, there is an increasing interest in utilizing R for
clinical reporting. This shift extends from static to dynamic reporting, enabling early detection of trends in
clinical results during study conduct. Several R packages are available for clinical reporting, including
{kable}, {kableExtra}, {formatable}, {gt}, and {gtsummary}. These packages offer varying levels of
development simplicity, customization options, and output formats. In this article, we focus on the {gt} and
{gtsummary} packages with the assumption that readers have fundamental understanding of R
programming and familiarity with the {dplyr} and {tidyverse} packages. Additional information about these
packages can be found in the referenced sources. Mastery of the principles underlying the {gt} and
{gtsummary} packages empowers users to construct interactive and dynamic reports in R.

{gt} Package

The {gt} package design revolves around five primary table components: Table header, Stub head, Stub,
Footnotes, and Source notes. Each of these components comprises subcomponents that offer
customization options. Constructing tables with the {gt} package has a three-step approach as outlined
below in Table 1. First, generate a table object containing summary statistics. Second, utilize various
formatting options to craft a "gt" object. Finally, export the formatted "gt" object to the desired output.

Reporting in gt

Table Object “gt” Object

HMTL
RTF
LaTeX
Docx

Input Output
Table 1. Input and Output in {gt} package

STEP 1: CREATING A TABLE OBJECT
 This step involves creating a data frame with desired summary statistics/display values. This can be
easily done with {dplyr} and {tidyerse} packages in combination with base R functions. We can use

2

advanced concepts in R like metaprogramming to automate. Examples of creating table objects are found
in reference material.

STEP 2: CREATING A “GT” OBJECT

To generate a "gt" object, we utilize the gt() function. This function requires input "data", alongside a few
additional optional parameters. Among these, the "rowname_col" and "groupname_col" options facilitate
the conversion of row and column names into row and column labels, respectively. Table 2 illustrates a
fundamental "gt" object produced from a dataset containing summary statistics obtained in Step 1.

gt(
 data,
 rowname_col =
 groupname_col =
…..
)

Table 2. “gt” Object with summary statistics

The "gt" object can be customized using various built-in functions. Utilizing "tab_*" functions allows for
making general modifications.

a. Titles and footnotes can be added using “tab_header: and “tab_footnote” functions. Table 3 shows
the output with titles and footnotes.
 tab_header(
 title = …,
 subtitle = …,

…
)

 tab_footnote(
 footnote = …,
 locations = NULL,
 placement = c("auto"),

…
)

3

Table 3. “gt” Object with tab headers

b. The columns can be further customized using “fmt *” functions and “col_*” functions. Table 4 shows
the resulting output after utilizing “fmt_percent“, “fmt_number“, “col_width“, “cols_align“ functions.

fmt_integer(
 columns = ...,
 rows = ...,

…
)

 fmt_percent(
 columns = ...,
 decimals = ...,

…

)

 cols_merge(
 columns = ...,
 pattern = ...,

…

)

 cols_label(.list = ...)

Table 4. “gt” Object with fmt_* and col_* functions

4

c. We can save the created object to a file using “gtsave” function. “gt” supports HTML, PDF, PNG,
LaTex and RTF formats.

gt::gtsave(filename = "....ext").

{gtsummary} Package
“gtsummary” package builds on {gt} , {broom} and {labelled} packages and generates publication ready
tables on the fly. Rather than building from individual table components, {gt summary} provides integrated
functions that obviates the need to build tables from scratch. We will cover summary tables, efficacy
tables and inline and custom tables.

SUMMARY TABLES
In “gtsummary” package, tbl_summary is the core function that generates descriptive statistics for
continuous and categorical variables as shown in Table 5. This function has four summary types:
continuous, continuos2, categorical and dichotomous. Continuous type shows summary statistics
horizontally, while continuous 2 type displays vertically in more than one row.

descrp_table <-
 dataset %>%
 select(...) %>%
 tbl_summary(
 by = ...,
 type = all_continuous() ~ "....,
 statistic = all_continuous() ~ c("{N_obs}", "{mean} ({sd})",
"{median}", "{min}, {max}"),
 missing = "no"
 …
)

Table 5. “gtsummary” table report

EFFICACY TABLES
“tbl_survfit” function handles survival analyses data in “gtsummary” packages. “add_p”, “add_n” and
“add_nevent” functions can be used to add p-values and columns with number of observations and
events as shown in Table 6.

eff_table <- tbl_survfit (
 survfit (Surv(..., ...) ~, adtte_xpt),

5

 times = c (..., ...),
 label_header = "**{time} Years **",
 …
)

Table 6. “gtsummary” Efficacy Report

IN-TEXT -CUSTOM SUMMARY
{gt summary} provides inline_text function for reporting in documents for summary and regression
outputs.

 inline_text(… variable = ..., level = "...", column = "...", pattern
= "....").

For more flexible reports, we can use tlbl_custom_summary function where we define our custom function
outside the call to tbl_custom_summary and pass the argument to “stat_fins” parameter.

 tbl_custom_summary(
 include = c(..., ...),
 by =,
 stat_fns = everything() ~ ...,
 statistic = everything() ~ ...,
 digits = everything() ~...,
 overall_row = ...,
 overall_row_label = ...
)

CONCLUSION
We have explored how "gt" and "gtsummary" can be leveraged to generate exceptionally flexible and
dynamic reports. The concepts outlined in this paper represent just a portion of the extensive feature sets
offered by both packages. By tapping into these additional features, users can develop customized reports
tailored to their specific requirements, and seamlessly integrate them with emerging automated solutions.

6

REFERENCES

Sjoberg DD, Whiting K, Curry M, Lavery JA, Larmarange J. Reproducible summary tables with the gtsum
mary package.The R Journal 2021;13:570–80. https://doi.org/10.32614/RJ-2021-053.

Lannone R, Cheng J, Schloerke B, Hughes E, Lauer A, Seo J, Brevoort K (2024). gt: Easily Create Present
ation-Ready Display Tables. R package version 0.10.1.9000, https://github.com/rstudio/gt, https://gt.rstudio.
com.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., H
enry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seid
el, D., Spinu, V.,Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 16
86.

ACKNOWLEDGMENTS
We thank the Jazz Pharmaceutical Data Science team for their support and guidance in the preparation
of this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Raj Chennamaneni
rchennamaneni@jazzpharma.com

Sudhir Kedare
sudhir.kedare@jazzpharma.com

Any brand and product names are trademarks of their respective companies.

https://doi.org/10.32614/RJ-2021-053
https://gt.rstudio.com/
https://gt.rstudio.com/

	Abstract
	Introduction
	{gt} Package
	Step 1: Creating a table object
	Step 2: Creating a “gt” object

	{gtsummary} Package
	summary tables
	efficacy tables
	In-text -CUSTOM SUMMARY

	Conclusion
	References
	Acknowledgments
	Contact Information

