PharmaSUG 2024 - Paper SD-431

inspectoR: QC in R? No Problem!

Steve Wade, Sudhir Kedare, Chen Yang, Matt Travell and Jagan Mohan Achi, Jazz
Pharmaceuticals, Inc.

ABSTRACT

More organizations are starting to embrace open-source technologies to perform tasks traditionally
completed in SAS®. One such activity is to QC datasets, tables, and figures in the process of producing
TLF’s. Independent programming is done for many of those TLF’s, comparing the results from both
programmers. Jazz has developed the inspectoR package, an alternative to SAS/COMPARE®
procedure, to allow QC performed in R to be compared back to datasets coming from a SAS system.

In this paper, we demonstrate how inspectoR will compare these datasets and produce a report showing
the findings. The report produced by inspectoR is much like PROC COMPARE output but is produced in
HTML in a more readable format.

inspectoR has proven to be a valuable tool in helping to transition QC tasks to R and maintain the level of
quality expected from SAS systems.

INTRODUCTION

Jazz Pharmaceutical is a patient-focused growing Biopharma company undergoing rapid internal digital
transformation and modernization of its data analytics capabilities while expanding into new molecule
entities. The challenge to the newly formed Integrated Data Analytics and Statistical Programming group
(IDASP) was how to begin to embrace open-source technology in a department that primarily uses SAS.

Within IDASP, the QC/validation process includes a technique in which a “production” programmer and a
“QC” programmer independently use the same specifications to program an output. The QC programmer
then compares their results to the production programmer’s results. This entire process uses SAS with
the QC programmer also using SAS/COMPARE. The output will typically be a SAS dataset such as
SDTM, ADaM, or a dataset used to produce a report.

inspectoR was developed to provide an open-source tool that provides the same functionality as the
SAS/COMPARE procedure. Using inspectoR, we can replace the QC side of the process with R. QC
programmers can learn R by programming the dataset using R, then compare it back to the production
side using inspectoR. Additionally, inspectoR improves the process by providing 1) a user-friendly, easy-
to-read HTML report that indicates an overall pass/fail as well as individual test pass/fail statuses, and 2)
a JSON file for each output with a pass/fail status used by the inspectoR status_report() function to create
a status dashboard for all outputs. These improvements not only make the process faster and easier but
also more efficient.

DETAILS
1. THE PROCESS

The approach was to use SAS for the “production side” and R for the “QC side” to achieve quality outputs
in the independent programming process. Figure 1 shows the typical high-level workflow of the SAS
independent programming process in the red boxes. The green boxes show the modifications when using
inspectoR.

- ~
SAS SAS/COMPARE
- Report

(Production Programming)

- J

4 N
SAS
(QC Programming)
A\ J
() i HTML
R Compare > —
(QC Programming) i Results P
_ Y, ({inspectoR})

’Red indicates previous SAS process ‘

‘Green indicates new open-source process using {inspectoR} ‘

Figure 1. QC Process using open-source inspectoR package.

2. inspectoR FUNCTIONS
a) compare_ds()
b) status_report()
compare_ds()

Compare_ds is the main function of inspectoR that controls everything about the comparison. The output
from this function is 1) an HTML pass/fail report, 2) a json file indicating pass/fail for the comparison.

compare_ds() function parameters:

Parameter Default | Meaning Example

base = The first dataset to be used in the base = prod_ADSL
comparison

compare = The second dataset to be used in compare = QC_ADSL

the comparison

base_label = “Prod” Descriptive label of first dataset. base_label = “PROD”
This is used in the HTML output.

compare_label = “‘Qc” Descriptive label of second Compare_label = “QC”
dataset. This is used in the HTML
output.

test_ mode = FALSE | If TRUE, outputs will be saved in a

temporary location in the project

generate_html_json = | TRUE Whether to generate HTML and
json output

open_html = TRUE | Whether to automatically open the
generated HTML output

output_loc = NULL Where you want the HTML and output_location =
json files to be written “study1\ADaM”
output_name = NULL The name you want given to the output_name = “ADSL”
HTML and json files (without
extension)

Table 1. compare_ds() function parameters.
status_report()

The status report function will read all json files in a given directory and produce an overall pass/fail status
report.

status_report() function parameters:

Parameter Default Meaning Example

dir = Directory where json files | dir = “study1\ADaM”
reside

test_ mode = FALSE If TRUE, report will be

saved to temp location in
the project

output_dir = Where you want to save output_directory = “study1\ADaM”
the status report

output name | “Status_Report” | The name you want to output_name = “ADaM

= give to the status report status_04MAY2023”

open_html = TRUE If TRUE, report will be

automatically opened.

Table 2. status_report() function parameters

3. inspector USAGE

To accomplish the independent programming QC process, the production programmer will create a SAS
program to produce a SAS dataset (prod_xyz). The QC programmer will create an R program to produce
a dataset/dataframe using the same specifications (qc_xyz). Both the production and QC datasets should
have the same structure, meaning the number, name, and order of variables should be the same as well
as have the same basic type (numeric, character, date). The R program will then make a call to the
inspectoR compare_ds() function to compare the two datasets:

compare ds (base = prod xyz,
compare = gc_xyz,
base label = “PROD”,
compare label = “Qc”,

output loc "/mylocation",
output name "xyz",
open_html = FALSE)

Currently, compare_ds will create a row number variable from one to the number of observations in each
dataframe and compare by the row number variable. Allowing variables to be specified as keys is
something for future development consideration.

The package compareDF is used to provide a cell-by-cell comparison of the two dataframes. This
package produces a nice report highlighting differences in values between the two datasets.

4. inspectoR COMPARISON CHECKS

a. Same # Rows - Do the datasets contain the same number of observations?

b. Same # Columns — Do the datasets contain the same number of variables?

c. Same Variables — Do the datasets contain the SAME variables? If not, this will produce a
report for 1) in “PROD” but not in “QC”, 2) in “QC” but not in “PROD”, or 3) both.

d. Same Column Type & Attributes — Do the variables have the same type (i.e.
numeric/character/date) and/or attributes (i.e. labels)?

e. Cell by Cell Comparison of Values — Show differences between values, if any (compareDF
package).

5. inspectoR EXAMPLE OUTPUT

The mtcars dataset from the R environment is used to show possible outcomes from inspectoR.
a. HTML Report:
Exact Match:

Comparison of Prod MTCARS with QC MTCARS

Overall status: [Pass

Check Prodvs QC Pass?
Number of rows in Prod: 32

San
Number of rows in QC: 32

Number of columns in Prod 11

w
o
3
]
1t

Y

3
(K]

Number of columns in QC: 11

g
(<)

g
E
o
2
3
3
3
(<)

p:
=
<]

Prod vs QC cell-by-cell comparison

No differences found between Prod and QC for MTCARS

Display 1 HTML output example when datasets are an exact match.

Differences Found:

Comparison of PROD MTCARS with QC MTCARS

Created by swade

Run date: 2023-12-20_22-05-23_UTC

Overall status: ¥ Fail

PROD vs QC

Number of rows in PROD: 32

Number of rows in QC: 32

Number of columns in PROD: g
Same # columns
Number of columns in QC: 10

Same variables

Variables in PROD but not in QC
Type Label

wt numeric wt Variable

Variables in QC but not in PROD
Variable Type Label
am numeric am Variable

numeric gear Variable

Same column type & attributes

Common variables with differing type or attributes
Variable Dataset Type Attributes

PROD character label: carb Variable

QoC numeric NULL

All cells are identical

PROD vs QC cell-by-cell comparison

Showing the first 50 rows of differences

Row Number DataFrom mpg cyl disp hp drat gsec vs carb

o2}

1 PROD 21 6
1 Qc 309 6

0 110 9 1646 o 4

"
(o]
o

3
110 39 1646 o 4

Display 2 HTML output example when datasets have differences.

inspectoR, through the compareDF package, will report rows and columns from both datasets containing
differences and color code the differences in each cell. The report produced by inspectoR is similar to
PROC COMPARE output but is produced in HTML format and uses the format above for cell differences
(Display 2).

b. Status Report:

In addition to the HTML output, a JSON file is also produced that contains information about the output
and a pass/fail result. These JSON files can then be used to produce a dashboard in a “runall” type batch
process to enable users to easily see what passed/failed for a given batch run. The status_report()
function reads the json files and gives an overall pass/fail status of all datasets compared in a given
directory similar to the output shown below.

Status Report

7 out of 8 passing

Table Pass?

ADAE
ADCM
ADEG
ADEX
ADLB
ADSL X
ADTTE
ADVS

Display 3 Status Report

CONCLUSION

inspectoR has proven to be a valuable tool in helping SAS programmers learn to program in R and
maintain the level of quality expected from SAS systems. The HTML output is easy to read and user-
friendly providing a fast, convenient way to see differences between datasets and the status report
provides an overall status at a glance.

LESSONS LEARNED

R has a fairly steep learning curve coming from SAS. However, the new process gives SAS programmers
a good way to learn R.

There are things to be aware of that can cause confusion:

e NA versus
blanks. Setting NA values to
equal.

e Some functions/merging in R may result in a blank at the end of a text value, which causes the values
to be color-coded as differences when you cannot see the difference just be looking at it. There are
techniques in R that can facilitate finding these differences such printing the values of a given variable
to easily see one value has an extra space.

— R uses NA in character values can cause differences in the compare that appear as
“"is recommended on the R side to allow blank variables to compare

NEXT STEPS

e Continue to enhance the inspectoR package.
o Allow the use of key variables.
o Parameter to turn off attributes checks. For example, the R programmer may not have added
variable labels, which will result in a lot of differences.
o Limit number of HTML differences to show.

o Validate R to allow for more uses.

REFERENCES

compareDF Package: https://cran.r-project.org/web/packages/compareDF/index.html

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Steve Wade
Jazz Pharmaceuticals, Inc.

swade@jazzpharma.com

Sudhir Kedare
Jazz Pharmaceuticals, Inc.
sudhir.kedare@jazzpharma.com

Chen Yang
Jazz Pharmaceuticals, Inc.
chen.yang@jazzpharma.com

Matt Travell
Jazz Pharmaceuticals, Inc.

matthew.travell@jazzpharma.com

Jagan Mohan Achi
Jazz Pharmaceuticals, Inc.
jachi@jazzpharma.com

Any brand and product names are trademarks of their respective companies.

