
PharmaSUG 2024 – Paper SD-444

Five Reasons To Swipe Right on PROC FCMP, the SAS® Function Compiler
for Building Modular, Maintainable, Readable, Reusable, Flexible,

Configurable User-Defined Functions and Subroutines

Troy Martin Hughes

ABSTRACT

The FCMP procedure (aka, the SAS® function compiler) empowers SAS practitioners to build our own
user-defined functions and subroutines—callable software modules that containerize discrete functionality,
and which effectively extend the Base SAS programming language. This introduction explores five high-
level problem sets that user-defined functions can solve. Learn how to hide a hash object (and its
complexity) inside a function, how to manipulate SAS arrays, how to design a format (or informat) that calls
a function, how to run a DATA step (or SAS procedure) inside of a DATA step (aka, DPDD), and how to
avoid unnecessary usage of the SAS macro language. Interwoven throughout the discussion are the
specific software quality characteristics—such as modularity, maintainability, readability, reusability, and
configurability—that are achieved through the design and implementation of FCMP user-defined functions.
For additional information, context, and examples, please consult that author’s 2024 SAS Press book:
PROC FCMP User-Defined Functions: An Introduction to the SAS® Function Compiler. (Hughes, 2024)

INTRODUCTION

SAS user-defined functions and subroutines (referenced collectively in this text as “functions”) are defined
inside the FCMP procedure, and compiled when FCMP executes. Thereafter, the named function can be
called in the same manner as SAS built-in functions—those provided as part of out-of-the-box Base SAS
functionality. Thus, each new user-defined function that is developed, tested, and released into production
represents a new building block that can be implemented by diverse users, and which supports diverse use
cases in future software products and projects.

This concise text in no way intends to introduce FCMP syntax. Rather, it demonstrates several use cases
solved through FCMP user-defined functions. To this end, examples compare functionally equivalent
solutions—first without user-defined functions, and subsequently with user-defined functions. The
conspicuous benefits of user-defined functions are showcased, including the specific software quality
characteristics that user-defined functions imbue.

Software modularity describes the extent to which software is cleaved into bite-sized chunks, the aim of
which is to enable one software module to be modified without adversely (or inadvertently) affecting any
other software modules. Modular software is contrasted with monolithic software, in which extensive code
is (unfortunately) commingled within one program file. User-defined functions support modularity because
a function’s functionality is encapsulated within the FCMP procedure.

Software maintainability describes the extent to which software can be modified readily when needed—
whether to support scheduled maintenance that alters functionality or improves performance, or emergency
maintenance that corrects software defects, or which restores functionality after compromised software
availability. User-defined functions support maintainability because function definitions (encapsulated within
the FCMP procedure) can be modified independently of the programs calling these functions.

Software readability describes the extent to which software can be readily understood, including both its
syntax and accompanying internal comments. User-defined functions improve the readability of functions
themselves because functionality is discrete and containerized. Moreover, user-defined functions improve
the readability of the programs calling functions because any functionality contained inside a function can
be inherently removed from the program calling that function.

Software reusability describes the extent to which software can be reused in future software products or
projects. Reuse can benefit the original function developer or—where the function is shared with
teammates, within an organization, or disseminated through publication—reuse can benefit others. User-
defined functions support reusability because their modularity, conciseness, flexibility, and singular

2

functionality collectively yield a level of abstraction that can be pliably implemented by various users to
support various use cases and various data.

Software configurability describes the extent to which software can be configured by end users—that is,
the extent to which users can supply varied input (arguments) to effect varied output (return values, return
codes, or other outcomes). End users will often describe a highly configurable function as being highly
flexible because it can be used to support various software products or projects—and their varied data.
User-defined functions support configurability because they can declare character and numeric scalar
parameters, as well as non-scalar parameters such as SAS arrays. And in this regard, reusable FCMP
functions can often far surpass the functionality of SAS macros engineered for a similar purpose.

With even this scant introduction to software quality characteristics, the high-level benefits of user-defined
functions begin to become apparent. Thus, although this text enumerates five low-level problem sets solved
by FCMP user-defined functions, in each case, higher-level aspects of software quality are commensurately
and inarguably improved. For a more comprehensive view of software quality, the author’s text provides a
600-page introduction: SAS® Data Analytic Development: Dimensions of Software Quality. (Hughes, 2016)

1. HIDE YOUR HASH!

Consider the requirement to validate categorical data—for example, to determine whether a U.S. state
abbreviation contained within a transactional data set is valid. This lookup operation effectively evaluates
membership—whether one value is a member of a set of master values.

The following master data represent the enumeration of all 50 valid state abbreviations.

data state_abbrev;

 infile datalines;

 length st $2;

 input st $ @@;

 datalines;

AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND

NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY

;

The following transactional data represent state abbreviations that need to be validated, with the District of
Columbia and the Virgin Islands representing invalid data.

data possible_states;

 infile datalines;

 length state_abbr $2;

 input state_abbr;

 datalines;

CA

MS

CA

AL

AL

DC

VI

;

The following DATA step leverages the hash object and the hash CHECK method to evaluate membership.

data validated (drop=st);

 set possible_states;

3

 length st $2;

 if _n_=1 then do;

 declare hash h(dataset: 'state_abbrev');

 rc = h.definekey('st');

 call missing(st);

 rc = h.definedone();

 end;

 rc = h.check(key: state_abbr);

run;

The CHECK hash method returns a 0 when the state abbreviation is found in the State_abbrev master
table, and a non-zero value (e.g., 160038) when the state abbreviation is not found—that is, when the value
is invalid. The Validated data set denotes that neither DC nor VI are valid state abbreviations (per the
master table).

But what if this lookup functionality is required elsewhere—for example, in another program being
developed by another SAS practitioner to analyze different data? In this scenario, the entire hash object
would need to be recreated in the new DATA step.

A more modular, reusable solution would instead declare and evaluate the hash object inside a user-defined
function. Thereafter, an associated function call—a single line of code—could be used to provide equivalent
functionality to the preceding (and more convoluted) DATA step.

The following FCMP procedure defines the VALIDATE_STATE function, which returns 0 for valid state
abbreviations and a non-zero value for invalid state abbreviations.

proc fcmp outlib=work.funcs.lookup;

 function validate_state(st $);

 length st $2;

 declare hash h(dataset: 'state_abbrev');

 rc = h.definekey('st');

 rc = h.definedone();

 return(h.check());

 endfunc;

quit;

Because the hash complexity is encapsulated inside the function’s definition, the VALIDATE_STATE user-
defined function can now be called using a single line of code.

options cmplib=work.funcs;

data validated_fcmp;

 set possible_states;

4

 length rc 8;

 rc=validate_state(state_abbr);

run;

As demonstrated previously, the Validated_FCMP data set demonstrates that the first five observations
contain valid state abbreviations, whereas the last two observations (VI and DC) are invalid. Moreover, this
modular user-defined function is more readable and reusable than the functionally equivalent use of the
hash object directly in the DATA step. The author’s text provides more comprehensive usage of the hash
object to validate, clean, and standardize data: SAS® Data-Driven Development: From Abstract Design to
Dynamic Functionality. (Hughes, 2023)

2. MANIPULATE ARRAYS

Consider the requirement to manipulate an array within a DATA step. For example, given an array that
contains a list of superhero superpowers, how would you add a new superpower to the first empty array
element? In stack theory, this operation is known as pushing a stack, and it can be accomplished directly
(in the DATA step) or indirectly (facilitated by a user-defined function).

The following DATA step creates the Superpowers data set.

data superpowers;

 infile datalines dsd delimiter=',' truncover;

 length hero $32 power1 power2 power3 power4 power5 $20;

 input hero $ power1 $ power2 $ power3 $ power4 $ power5 $;

 datalines;

Thor,electricity,flight,longevity,weather manipulation

Doctor Strange,levitation,telekinesis,teleportation,time manipulation,magic

Thanos,telekinesis,gravity manipulation,teleportation,time manipulation

Wanda Maximoff,telepathy,mental manipulation

;

The final observation indicates that Wanda has two superpowers—telepathy and mental manipulation.
However, “healing” could be added as a third superpower, and this scenario describes the need to push
“healing” to Wanda’s stack of superpowers. And SAS arrays can operationalize this functionality.

The following DATA step declares the Powers array, which references five variables—Power1 through
Power5. For Wanda, only the first two array elements contain data, so the WHICHC function evaluates that
the third array element is the first empty element. Thereafter, “healing” is added to the third array element
(i.e., Power5).

data push;

 set superpowers (where=(hero='Wanda Maximoff'));

 array powers power1-power5;

 put powers[*]=;

 * calculate first empty position;

 emp = whichc('', of powers[*]);

 * push new superpower to stack;

 if emp ^= 0 then do;

 powers[emp] = 'healing';

 put powers[*]=;

 end;

run;

5

The log indicates that “healing” has been added to the Powers array.

power1=telepathy power2=mental manipulation power3= power4= power5=

power1=telepathy power2=mental manipulation power3=healing power4= power5=

NOTE: There were 1 observations read from the data set WORK.SUPERPOWERS.

 WHERE hero='Wanda Maximoff';

However, a more concise, reusable solution would instead define a user-defined function to effect the same
functionality.

At first glance, the following FCMP function would appear to replicate the push functionality.

proc fcmp outlib=work.funcs.stacks;

 function push_stack_char(arr[*] $, char_val $);

 outargs arr;

 emp = whichc('', of arr[*]);

 if emp ^= 0 then do;

 arr[emp] = char_val;

 return(1);

 end;

 else return(0);

 endfunc;

quit;

However, as described in a previous text by the author, the OF operator does not function in the FCMP
procedure, and the log demonstrates this failure. (Hughes, 2023)

728 proc fcmp outlib=work.funcs.stacks;

729 function push_stack_char(arr[*] $, char_val $);

730 outargs arr;

731 emp = whichc('', of arr[*]);

ERROR: The OF operator isn't allowed on an ARRAY with a dynamic size.

732 if emp ^= 0 then do;

733 arr[emp] = char_val;

734 return(1);

735 end;

736 else return(0);

737 endfunc;

738 quit;

NOTE: The SAS System stopped processing this step because of errors.

Thus, the OF operator and the WHICHC function cannot be utilized so a DO loop instead identifies the first
empty array element. Note that the return value is initialized to 1 when the function succeeds (i.e., the
CHAR_VAL parameter can be added to the array), and it is initialized to 0 when the function fails (i.e., the
array is already full so the CHAR_VAL parameter cannot be added).

proc fcmp outlib=work.funcs.stacks;

 function push_stack_char(arr[*] $, char_val $);

 outargs arr;

 do emp=1 to dim(arr);

 if arr[emp]='' then leave;

6

 end;

 if emp <= dim(arr) then do;

 arr[emp] = char_val;

 return(1);

 end;

 else return(0);

 endfunc;

quit;

And the following DATA step calls the PUSH_STACK_CHAR user-defined function to add “healing” to
Wanda’s list of superpowers—specifically, to the third array element, Power3.

options cmplib=work.funcs;

data push_fcmp;

 set superpowers (where=(hero='Wanda Maximoff'));

 array powers power1-power5;

 put powers[*]=;

 rc = push_stack_char(powers, 'healing');

 put powers[*]=;

run;

Thus, the user-defined function delivers identical functionality but it can now be called to add any character
value to any character array—far more flexible functionality than the original version that did not employ
FCMP. Moreover, the implementation of a return code now signifies when an array is full and it cannot be
pushed. For example, because Doctor Strange already has five superpowers, his Powers array is full, so
calling PUSH_STACK_CHAR on Doctor Strange will yield a return code of 0 that indicates no new powers
can be added to his stack.

3. APPLY A FORMAT/INFORMAT THAT CALLS A FUNCTION

The FCMP procedure has yet another trick up its sleeve—the ability to define a user-defined function that
is subsequently called by a user-defined format. That is, a format (or informat) can be defined that calls a
user-defined function to deliver the function’s functionality when the format is applied. A benefit to this
indirect function call is the ability to apply functionality anywhere a format can be applied—including inside
SAS procedures like PRINT, MEANS, and FREQ. This methodology is fully described in the author’s text.
(Hughes, 2023)

Consider the requirement not only to validate state abbreviations but also to transform valid state
abbreviations into their associated state names. The State_abbrev_lookup data set includes a snippet of
the lookup table that can operationalize this task.

data state_abbrev_lookup;

 infile datalines;

 length st $2 state $20;

 input st $ state $;

 datalines;

AK Alaska

AL Alabama

AR Arkansas

AZ Arizona

CA California

MS Mississippi

;

7

The TRANSFORM_STATE function transforms valid state abbreviations into state names, and returns a
missing value when an invalid state abbreviation is encountered.

proc fcmp outlib=work.funcs.lookup;

 function transform_state(st $) $;

 length st $2 state $20;

 declare hash h(dataset: 'state_abbrev_lookup');

 rc = h.definekey('st');

 rc = h.definedata('state');

 rc = h.definedone();

 rc = h.find();

 return(state);

 endfunc;

quit;

The following DATA step calls the TRANSFORM_STATE function directly.

options cmplib=work.funcs;

data transformed_fcmp;

 set possible_states;

 length state_name $20;

 state_name=transform_state(state_abbr);

 put state_abbr state_name;

run;

The log demonstrates that the first five values are valid, and shows their transformed values.

CA California

MS Mississippi

CA California

AL Alabama

AL Alabama

DC

VI

NOTE: There were 7 observations read from the data set WORK.POSSIBLE_STATES.

NOTE: The data set WORK.TRANSFORMED_FCMP has 7 observations and 2 variables.

The following FORMAT procedure defines the TRANSFORM_STATE_FMT user-defined character format,
which indirectly calls the TRANSFORM_STATE user-defined function (via the OTHER option) when the
format is applied. Thereafter, the PRINT procedure applies the TRANSFORM_STATE_FMT format to
transform state abbreviations temporarily to state names.

proc format;

 value $ transform_state_fmt other=[transform_state()];

run;

proc print data=possible_states;

 var state_abbr;

 format state_abbr $transform_state_fmt.;

run;

8

Thus, the output demonstrates how the user-defined function can be applied (indirectly) inside the PRINT
procedure.

The benefit of applying user-defined functions indirectly (via user-defined formats) is that formats can
transform data temporarily using the FORMAT statement, and can do so inside many SAS procedures.
And because user-defined functions can encapsulate complex business rules and conditional logic, user-
defined formats can in turn transform data using methods far more intelligent than the hash object lookup
that has been demonstrated.

4. DEEP PROC AND DEEP DATA (DPDD)

The FCMP procedure enables a DATA step to be executed inside of a DATA step or a SAS procedure to
be executed inside of a DATA step. The built-in RUN_MACRO function supports this seeming black magic
by creating a “side session” of SAS in which the child DATA step or SAS procedure executes. A separate
text by the author fully introduces this usage of RUN_MACRO (and its kissing cousin RUN_SASFILE) inside
of the FCMP procedure: Undo SAS® Fetters with Getters and Setters: Supplanting Macro Variables with
More Flexible, Robust PROC FCMP User-Defined Functions That Perform In-Memory Lookup and
Initialization Operations. (Hughes, 2023)

Consider the requirement to subdivide a data set programmatically. For example, from the preceding
Superpowers data set, four derivative data sets could be created—one each for Thor, Doctor Strange,
Thanos, and Wanda Maximoff. Many SAS practitioners would accomplish this feat using the EXECUTE
subroutine (aka, CALL EXECUTE). Another option, however, relies on the FCMP procedure, which can
leverage RUN_MACRO to create the derivative data sets through DPDD.

The following FCMP procedure defines the CREATE_DATASETS user-defined function, which calls the
RUN_MACRO function, which calls the CREATE_DATASETS_MACRO macro, which executes the DATA
step that creates each derivative data set.

%macro create_datasets_macro;

%let superhero=%sysfunc(dequote(&superhero));

%let superhero_file=%sysfunc(compress(&superhero));

data &superhero_file;

 set superpowers;

 where hero="&superhero";

run;

%mend;

9

proc fcmp outlib=work.funcs.reports;

 function create_datasets(superhero $);

 rc = run_macro('create_datasets_macro', superhero);

 return(.);

 endfunc;

quit;

Thus, the following DATA step creates four data sets—Thor, Doctorstrange, Thanos, and Wandamaximoff.
And each data set contains only the data associated with one superhero.

data _null_;

 set superpowers;

 rc=create_datasets(hero);

run;

The full capabilities of DPDD methods lie outside the scope of this text; however, data-driven programming
can be exemplified when data maintained in a data set (like Superpowers) can be leveraged to drive
dynamic processing.

5. REPLACE UNNECESSARY MACRO PROGRAMMING

The need for modular, maintainable, readable, reusable, configurable code is nothing new, and long
predates release of the FCMP procedure. Thus, prior to FCMP, SAS practitioners instead turned to the
SAS macro language to build so-called “macro functions” that resolve to dynamic output given dynamic
input. The SAS macro language was not a bad solution; however, with the introduction of the FCMP
procedure burgeoned better methods to create modular, reusable functionality in Base SAS.

Consider the requirement to determine how much stuff can be crammed into a sphere, whose volume is
determined by the formula 4/3 π r3. For example, assuming a perfect sphere, how much stuff fits in Uranus?
NASA has previously probed Uranus, and records its radius to be 15,881.5 miles. (NASA, 2024) Thus,
assuming a perfect sphere, the volume of Uranus can be calculated to be approximately
16,778,887,651,557 cubic miles.

And because the formula that calculates spherical volume is not a built-in SAS function, and because SAS
practitioners would rather not type and retype its complexity—a practice that would be both inefficient and
error prone—a reusable software module is the preferred method for this calculation, in which a single
argument represents the radius of the sphere.

A user-defined FCMP function is preferred, but first, the VOLUME_SPHERE macro calculates the volume
of Uranus using the &URANUS_RAD macro variable.

%macro volume_sphere(radius);

%let vol=%sysevalf(4/3 * %sysfunc(constant(pi)) * &radius**3);

&vol

%mend;

%let uranus_rad=15881.5;

%let uranus_vol=%volume_sphere(&uranus_rad);

%put &uranus_vol;

The log demonstrates the computed volume of Uranus:

1131 %put &uranus_vol;

16778887651557

10

Despite its functionality, use of the SAS macro language here is unnecessary and, arguably, unwarranted.
That is, the FCMP procedure can effect cleaner functionality that does not require the SAS Macro Facility
to parse any macro statements. Thus, the VOLUME_SPHERE user-defined function calculates the volume
of any sphere given its radius.

proc fcmp outlib=work.funcs.formulas;

 function volume_sphere(radius);

 return(4/3 * constant('pi') * radius**3);

 endfunc;

quit;

And the following DATA step similarly calculates the volume of Uranus by calling VOLUNE_SPHERE.

options cmplib=work.funcs;

data _null_;

 uranus_rad=15881.5;

 uranus_vol=volume_sphere(uranus_rad);

 format uranus_vol comma20.;

 put uranus_vol=;

run;

The log demonstrates the identical calculation without having to rely unnecessarily on the SAS macro
language. Moreover, the %SYSFUNC macro function can be used to call user-defined functions.

%let uranus_rad=15881.5;

%let uranus_vol=%sysfunc(volume_sphere(&uranus_rad));

%put &uranus_vol;

The SAS macro language is a powerful advocate whose reputation should not be sullied; however, it does
have limitations, such as all macro variables being character (as opposed to numeric), or the common
requirement that data be masked in the SAS macro language when they contain special characters such
as quotes, the ampersand symbol, or the percent sign. Rather, FCMP user-defined functions natively
support both character and numeric scalar variables, in addition to character and numeric arrays. Moreover,
because user-defined functions do not require data to be translated into macro variables (excepting where
RUN_MACRO and RUN_SASFILE are utilized), tedious data masking of arguments is also unnecessary
when calling user defined FCMP functions, as opposed to so-called macro functions.

As with the other user-defined functions that have been demonstrated, VOLUME_SPHERE increases
several aspects of software quality. It is more modular because its functionality is encapsulated within the
FCMP procedure; it is more readable because the function has been removed from the DATA step; it is
more reusable and configurable because the volume of any sphere can be calculated; and it is maintainable
because the function can be modified (if necessary) without altering the DATA step that calls it.

CONCLUSION

This introduction has only scratched the surface of the FCMP procedure and the powerful user-defined
functions and subroutines that can be engineered within it. Some high-level FCMP functionality was
demonstrated, although FCMP syntax lies outside the scope of this text. When considering how and
whether to implement FCMP user-defined functions—possibly to refactor existent SAS programs—the
need to increase software quality, inasmuch as the productivity of developers (who can develop user-
defined functions once yet use them forever), should drive the decision to master the FCMP procedure and
to implement its vast functionality.

11

REFERENCES

Hughes, T. M. (2016). SAS® Data Analytic Development: Dimensions of Software Quality. Hoboken, NJ:
John Wiley and Sons.

Hughes, T. M. (2023). Make You Holla' Tikka Masala: Creating User-Defined Informats Using the PROC
FORMAT OTHER Option To Call User-Defined FCMP Functions That Facilitate Data Ingestion
Data Quality. PharmaSUG. San Francisco, CA. Retrieved from
https://www.lexjansen.com/pharmasug/2023/AP/PharmaSUG-2023-AP-291.pdf

Hughes, T. M. (2023). SAS® Data-Driven Development: From Abstract Design to Dynamic Functionality,
Second Edition. San Diego: Kindle Direct Publishing.

Hughes, T. M. (2023). Sorting a Bajillion Variables—When SORTC and SORTN Subroutines Have
Stopped Satisfying, User-Defined PROC FCMP Subroutines Can Leverage the Hash Object to
Reorder Limitless Arrays. PharmaSUG. San Francisco, CA. Retrieved from
https://www.lexjansen.com/pharmasug/2023/AP/PharmaSUG-2023-AP-094.pdf

Hughes, T. M. (2023). Undo SAS® Fetters with Getters and Setters: Supplanting Macro Variables with
More Flexible, Robust PROC FCMP User-Defined Functions That Perform In-Memory Lookup
and Initialization Operations. PharmaSUG. San Francisco, CA. Retrieved from
https://www.lexjansen.com/pharmasug/2023/HT/PharmaSUG-2023-HT-093.pdf

Hughes, T. M. (2024). PROC FCMP User-Defined Functions: An Introduction to the SAS® Function
Compiler. Cary, NC: SAS Press.

NASA. (2024, March 24). Uranus Facts. Retrieved from https://science.nasa.gov/uranus/facts/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

mailto:troymartinhughes@gmail.com

	Abstract
	Introduction
	1. Hide Your Hash!
	2. Manipulate Arrays
	3. Apply a Format/Informat That Calls a Function
	4. Deep PROC and Deep DATA (DPDD)
	5. Replace Unnecessary Macro Programming
	Conclusion
	References
	Contact Information

