PharmaSUG 2024 - Paper SI-189

Automating annotation of TLF mocks Using Generative Al
Vidya Gopal, AstraZeneca

ABSTRACT

In this paper we will be discussing the use of Generative Al to automate the mapping and annotation of
ADaM variables to TLF mocks to increase the efficiency, quality, and accuracy of TLFs. The TLF mock
provides a specification for how the TLF should be created from the ADaM dataset. In a study, annotating
the mock is crucial to provide quality and traceability. Annotating a mock is time and labor intensive due
to the volume of TLFs and ADaM variables. This proof-of-concept proposal would entail exploring the use
of Generative Al prompts to match the variable name given in the ADaM specification document to the
general name given in the TLF mock shell. For instance, if the ADSL specification includes a variable
named AGECAT, this idea would aim to map this variable with the "Age Group" value in a demographic
table template. This can be done through techniques such as similarity analysis of ADaM dataset metadata.
Further work can examine approaches using prompt engineering to explore different types of analysis.
Once this process is completed, a review can be performed in order to validate the results.

INTRODUCTION

Large language models including, the concept of Generative Al has come into the public discourse in the
past couple of years. However, the underlying mathematics and science has been around since at least
1950, since computer scientist Alan Turing published his paper Computing Machinery and Intelligence. In his
paper, he discusses a concept he calls the “Imitation Game” where he tests a computers ability to be able
to produce answers that are indistinguishable from a human being. A computer that successfully passes
this test is said to have passed “Turing Test” and is held as a standard to prove that the machine possesses
human like intelligence [Turing., 1950].

Recently, ChatGPT-4 has made headlines for passing the Turing test [Mei at al., 2023]. ChatGPT-4 has been
shown to be human-like in its ability to process information. This means is that ChatGPT-4 can use machine
learning and context clues in order to make informed decisions and give more accurate answers, to yield
similar answers to a human. Generative Al serves to bridge the gap between human and computer code
by being able to perform complex analyses through English prompts, rather than code.

In this paper using Generative Al, we will explore matching TLF variable labels to ADaM variable names
in order to create a shell that can easily be interpreted by both programmers and statisticians. This will
lead to better communication and ultimately improved efficiency and productivity. This lower-code
approach allows for the developer to experiment with different prompts in order to engineer the prompt
that yields the most accurate results.

PROMPT ENGINEERING

In order to get the most accurate results, the Generative Al must be fed information that teaches it to
perform the task at hand. Sometimes this can be in the form of more precise prompt or providing context
for the machine to define the outlines of the solution sought. The following illustrations show the
approaches to prompt engineering that were explored:

DEMOGRAPHY TABLE EXAMPLE
Consider the following ADSL metadata:

A B C D E F G H I J K
1 Unnamed:0| Variable | Type | Len | DLen | Format | InFormat | Label
2 1 STUDYID Char 71 M1 $11. Study Identifier
3 2 DOMAIN Char 008 008 $8. Domain Abbreviation
4 3 USUBJID Char 4015 0115 $15. Unique Subject Identifier
5 4 SITEID Char (1 (1 $4. Study Site Identifier
6 5 REGION Char 008 R $8. Region
7 6 AGE Num 008 "o BEST10. Age
8 7 AGECAT Char flo flo $10. Age category
9 8 AGECATN Num o flo BESTI0. Age category Numeric
10 9 BRTHDT Num 008] DATES . Birth Date
11 10 SEX Char 1 1 $1. Sex
12 11 SEXN Num 008 "o BEST10. Sex (Numeric code]
13 12 RACE Char a1 a1 $41. Race
14 13 RACEN Num 2 "o BEST10. Race (Numeric code |
15 14 RACEOTH Char %o %o $50. Other Race, Specify
16 15 RACECAT Char 2 2 $12. Race category
17 16 RACECATN Num B "o BEST10. Race category Numeric
18 17 RANDFL Char " " S1. Randomized Population Flag
19 18 SAFFL Char " " $1. Safety Population Flag
20 19 ITTFL Char " " S1. Intent - To - Treat Population Flag
21 20 PPROTFL Char ! ! S1. Per - Protocol Population Flag
22 21 PKFL Char ! ! $1. PK Population Flag
23 22 COMPLFL Char ! ! S1. Completers Population Flag
24 23 TERMFL Char ! ! S1. Patient terminated study Flag
25 24 TERMOT Num B B DATES . Termination Date
26 25 TRTIA Char Bo Bo $30. Actual Treatment Group
27 26 TRTIAN Num B "o BEST10. Actual Treatment Group Numeric Code
28 27 TRT1P Char Bo Bo $30. Planned Treatment for Period 1
29 28 TRTIPN Num 60 "o BEST10. Planned Treatment for Period 1 Numeric
30 29 RANDOT Num 60] DATES . Randomization Date
31 30 TRTSTOT Num 60] DATES. Date of First Exposure to Treatment
32 31 TRTENDT Num 60] DATES . Date of Last Exposure to Treatment
33 32 RFSTDTC Char 0019 flg $19. Reference Start Date [char]
34 33 RFSTDT Num o0] DATES . Reference Start Date
35 34 RFENDTC Char 0019 g $19. Reference End Date (char)
36 35 RFENDT Num o0] DATES . Reference End Date
37 36 RFENDY Num 008 B 8. Reference End Day
38 37 IcDTC Char fs fs $15. Informed Consent Date
39 38 ICDT Num 2 5 DATES . Informed Consent Date - Numeric
40 39 ETERMSP Char 500 %00 $200. Reason for terminating the study early
41 40 ETERMN Num 2 "o BEST10. Reason for terminating early , Numeric
42
43
44

sheet1 sheet3 +

Note: Data is mocked up and does not represent any real-life scenario.

Consider the following demography table:

Variable
Age

Age Group

Gender

Race

Country

Unnamed: 1

N

Mean (SD)
Median
Ql1-Q3
Min - Max

18 to 29
30 to 39
40 to 49

Male
Female

White
Black or African American

USA
Other

Placebo Drug 50mg Drug Competitor

5 4 4 3
34.4(8.71) 30.0(6.16) 32.0(6.16) 32.0(5.29)

37 32.5 34.5 30
37.0-39.0 26.0-34.0 28.0-36.0 28.0-38.0
19 - 40 21-34 23-36 28-38

1(20.0%) 1(25.0%) 1(25.0%) 1(33.3%)
3(60.0%) 3(75.0%) 3(75.0%) 2(66.7%)
1(20.0%) 0(0.0%) 00.0%) 0(0.0%)

3(60.0%) 2(50.0%) 2(50.0%) 1(33.3%)
2(40.0%) 2(50.0%) 2(50.0%) 2(66.7%)

4(80.0%) 4(100.0%) 3(75.0%) 2(66.7%)
1(20.0%) 0(0.0%) 1(250%) 1(33.3%)

4(80.0%) 4(100.0%) 3(75.0%) 2(66.7%)
1(20.0%) 0(0.0%) 1(250%) 1(33.3%)

Note: Table is mocked up and does not represent any real-life scenario.

The first step of this process is constructing the different pieces of the prompt. Since we must match the
table label to the ADaM variable, it may initially make sense to construct a prompt like the following:

match and return the elements closest to or equal to to these elements: Age, Age
Group, Gender, Race, Country from the following list of elements: STUDYID, DOMAIN,
USUBJID, SITEID, REGION, AGE, AGECAT, AGECATN, BRTHDT, SEX, SEXN, RACE,
RACEN, RACEOTH, RACE CAT, RACECATN, RANDFL, SAFFL, ITTFL, PPROTFL, PKFL,
COMPLFL, TERMFL, TERMOT, TRT1A, TRT1AN, TRT1P, TRT1PN, RANDOT, TRTSTOT,
TRTENDT, RFSTDTC, RFSTDT, RFENDTC, RFENDT, RFENDY, ICDTC, ICDT, ETERMSP,

ETERMN.

However, this prompt leaves out certain key information that makes the matching process more difficult,
yielding less accurate results. We can then add more qualifying information from the ADSL metadata such
as labels and construct a better prompt like the following:

Match this group of labels: Age, Age Group, Gender, Race, Country from the following
list of labels A: Study Identifier, Domain Abbreviation, Unique Subject Identifier, Study
Site Identifier, Region, Age, Age category, Age category Numeric, Birth Date, Sex, Sex
(Numeric code], Race, Race (Numeric code], Other Race , Specify, Race category,
Race category Numeric, Randomized Population Flag, Safety Population Flag, Intent -
To - Treat Population Flag, Per - Protocol Population Flag, PK Population Flag,
Completers Population Flag, Patient terminated study Flag, Termination Date, Actual
Treatment Group, Actual Treatment Group Numeric Code, Planned Treatment for
Period 1, Planned Treatment for Period 1 Numeric, Randomization Date, Date of First
Exposure to Treatment, Date of Last Exposure to Treatment, Reference Start Date [
char], Reference Start Date, Reference End Date (char), Reference End Date,
Reference End Day, Informed Consent Date, Informed Consent Date - Numeric,
Reason for terminating the study early, Reason for terminating early Numeric. Each of
these labels to the following variables: STUDYID, DOMAIN, USUBJID, SITEID, REGION,
AGE, AGECAT, AGECATN, BRTHDT, SEX, SEXN, RACE, RACEN, RACEOTH, RACE CAT,
RACECATN, RANDFL, SAFFL, ITTFL, PPROTFL, PKFL, COMPLFL, TERMFL, TERMOT,
TRT1A, TRT1AN, TRT1P, TRT1PN, RANDOT, TRTSTOT, TRTENDT, RFSTDTC, RFSTDT,
RFENDTC, RFENDT, RFENDY, ICDTC, ICDT, ETERMSP, ETERMN. Return the closest
matches.

7

then we will be able to more accurately match the variable to table label. Here is the result of this prompt,
successfully matching the table labels to their corresponding ADaM variables:

Based on the provided labels, the closest matches from the last list to the first list are
as follows:

» Age: AGE

* Age Group: AGECAT
» Gender: SEX

» Race: RACE

» Country: REGION

These are the closest matches based on the provided labels. If you need further
assistance or if there's anything else | can help you with, feel free to ask!

ANNOTATION PROCESS USING R AND CHATGPT

Combining R and ChatGPT allows us to use ChatGPT to solve the mapping problem and R to help place
the annotations where they belong on the TLF mock.

DISPOSITION LISTING EXAMPLE

Using ChatGPT’s APl in R, we can automate the physical annotation process. This method would entail
using the Generative Al prompts to extract the variables that match best and then place them on the TLF
mockup shell.

First, we need to extract the response to the prompt. The response looks like the following for a
disposition listing;:

"USUBJID|DSSTDY |DSTERM|DSCAT |DSSCAT"

Then we split up the string into an array:
var <- strsplit(ex7, split = "\\|")
print (var)
varl <- t (t (data.frame (var)))

Then using the following statement, we can add the annotations to the listing.

comb <- paste(dscr,'<',c (varl), '>")

Finally, we output the annotated TLF to an RTF file:

Subject Identifier = Study Day = Disposition Event = Description <
USUBJIID = DSSTDY = DSTERM = Reason < DSCAT = DSSCAT =

XXX XX KAXK XXX AR

XX KAXX XXX AN

XX KAXX XXX AN

XX KAXX XXX AN

KAXX XXX AN

XXX KAXX XXX AN
KAXX XXX AN

KAXX XXX AN

KAXX XXX AN

POTENTIAL FUTURE DEVELOPMENTS

This proof of concept can be extended to an app that can map ADaM variables to TLF mock shells on a
larger scale using different types of ADaM datasets and TLF mockups. The prompts would require fine
tuning to match the ADaM variable to the TLF label. There are a few techniques we can use to improve
this process such as uploading the completed ADaM datasets to the Generative Al platform.

As mapping is used in many different processes within the pharmaceutical world, there are other potential
use cases that can leverage a similar approach. For example, we could use a similar approach for mapping
Raw data to SDTM data, Raw data to eCRFs and SDTM to ADaM data.

Itis also possible, but technically challenging to build a pipeline that can automate the process of generating
TLF code from specifications using prompt engineering to automate repetitive programming tasks.

CONCLUSION

Generative Al with its user-friendly nature can be used by non-technical user base. The users need to be
trained on prompt engineering, but this is an easier process than training someone on a programming
language.

Individuals from several different types of backgrounds such as statisticians and programmers can benefit
from this methodology, as it creates traceability that cuts down on unnecessary confusion for what

variables need to be used. More work needs to be done to develop and validate a tool such as this before
it can be used in a production environment.

REFERENCES
Turing, A.M Oct., 1950 . COMPUTING MACHINERY AND INTELLIGENCE . Oxford, England

Mei, Xie, Yuan, Jackson August 12 2023. A Turing Test of whether Al chatbots are similar to
humans

David Nield August 12 2023 17 Tips to take Your ChatGPT Prompts to the next Level.

RECOMMENDED READING
o Developing Apps with GPT-4 and ChatGPT — Olivier Caelen, Marie-Alice Blete - O’Reilly Publications

CONTACT INFORMATION <HEADING 1>

Your comments and questions are valued and encouraged. Contact the author at:

Vidya Gopal
Astrazeneca
vidya.gopal@astrazeneca.com

Any brand and product names are trademarks of their respective companies.

https://www.oreilly.com/search?q=author:%22Olivier%20Caelen%22
https://www.oreilly.com/search?q=author:%22Marie-Alice%20Blete%22

	Abstract
	In this paper we will be discussing the use of Generative AI to automate the mapping and annotation of ADaM variables to TLF mocks to increase the efficiency, quality, and accuracy of TLFs. The TLF mock provides a specification for how the TLF should...
	Introduction
	Prompt engineering
	demography table example

	annotation process using R and chatgpt
	Disposition Listing example

	potential future developments
	Conclusion
	References
	Recommended Reading
	Contact Information <heading 1>

