
1

PharmaSUG 2024 - Paper AP-263

Creating Adverse Event Tables using R and SASSY

Vicky Yuan, Incyte Corporation
David, J. Bosak, Archytas Clinical Solutions

ABSTRACT

Currently, pharmaceutical industry is focusing on adopting R language for the creation of submission packages
and TLFs generation. SAS programmers who come to R are often frustrated because there are many reporting
packages in R. Selecting a right package for programmers became more and more important. If a certain R
package can provide functions, which have an ability to create data libraries, traceable log, format catalogs and
easy way to reports as DOCX, rich-text files like what SAS did. sassy system seems meet all the criteria.

This paper will provide on-hand overview of generating adverse event table by using sassy system.

The R product used in this paper is R sassy system version 1.2.3 running on RStudio environment.

INTRODUCTION

Adverse event by system organ class and preferred term tables plays a vital role in clinical trial studies,
showcasing the number of subjects experiencing specific organ class and preferred term issues. While achieving
this in SAS requires only a few lines of code. In R, it may demand dozens or even hundreds. Tasks like creating
logs, loading data files, or generating reports can become cumbersome. The sassy system tackles these hurdles
head-on, streamlining the R experience for SAS programmers. Leveraging specialized packages, it narrows the
disparity between R coding and robust reporting capabilities of SAS. By seamlessly integrating these features, the
sassy system enhances efficiency and satisfaction in R programming. With the sassy system, you can:

• Create a log

• Do a data step

• Generate frequency and summary statistics

• Write a report in a few lines of code

This paper utilizes an adverse event table to show case the efficacy of the sassy system.

INSTALLATION

The sassy meta-package is published on CRAN. You can install it with the following console command:

Install.packages(“sassy”)

Library(sassy)

The commands provided above will install and load a suite of packages designed to align your approach to
programming in R closely with how you approached programming in SAS.

The sassy system contains the following packages:

• logr: To create a traceable log

• libr: To create a libname, a data dictionary, and perform a data step

• fmtr: To bring simplicity, flexibility, and power to data formatting

• reporter: To create regulatory-style statistical reports. It specializes in producing Tables, Listings and
Figures for the pharmaceutical, biotechnology, and medical-device industries.

• procs: Simulates several popular SAS procedures in R

• common: A collection of utility functions

2

Together, the above packages constitute a coherent and well-designed system for managing and reporting on data
in R. This paper will use several functions from this system to accomplish the desired shift table.

ADVERSE EVENT TABLE CHALLENGES

The challenge for this table is the layout, percentage calculation and actual report generation. The challenges
encountered include:

(a) Page Header: Multiple lines of page header, aligned left and right, with a page number in the top right.

(b) Spanning Headers: Report requires spanning headers for baseline and post-baseline.

(c) Percentage Calculation: using fmt_cnt_pct function from fmtr package will make it easy.

(d) Page Footer: The page footer has items aligned left and right, and center. it is positioned at the bottom of
the page or above the page footnotes

The above challenges are identified on the image below:

Figure 1. Adverse Event table challenge areas

The sassy packages were able to accomplish this table using existing features, and dynamically generating each
page of the output. The remainder of the paper will explain how it was accomplished.

(c)

(d)

(b)

(a)

3

CODE DEVELOPMENT

STEP 1: LOAD LIBRARIES AND SET UP VARIABLES

The first step in creating the desired a table is to load the needed libraries and set some program variables. There
are only two libraries needed for this table: sassy and dplyr. The dplyr package is used for data manipulation.
The sassy package will load all of the other packages needed for reporting.

In addition, the program will set some variables needed in the program. The variables needed include the program
name, output name, timestamp, and directory. These variables are set at the top of the program so they may be
changed if needed. Here is the code:

library(sassy)

library(dplyr)

Set variables

program.name <- "t_aesocpt"

program.output <- "T_3_2_1_1_aesocpt"

program.timestamp <- as.POSIXlt(Sys.time(), "UTC") %>%

 strftime("%d%b%y(%H:%M)") %>% toupper()

program.dir <- dirname(Sys.path())

STEP 2: OPEN LOG

The second step of the program is to open the log. The log is created using the logr package of the sassy
system. This package can generate most of the log automatically. To engage the automatic log generation, you
must set the “logr.autolog” option to TRUE, then open the log. The following code shows how to do this:

options("logr.autolog" = TRUE, "logr.notes" = FALSE)

Open log

logpth <- log_open(file.path(program.dir, paste0(program.output, “.log”,sep=’’)))

Notice that the program.dir and program.output variables were set in Step 1 above.

STEP 3: PREPARE PERCENTAGE CALCULATION

The third step is the program is to prepare percentage calculation for “Any TEAE”, “System Organ Class” and
“Preferred Term”. These calculations will fmt_cnt_pct function from the fmtr package.

1) Population N count:

adsl <- adsl %>%

 dplyr::filter(saffl == "Y")

adsl.total <- adsl %>%

 mutate(

 tmtn=4,

 tmt="Total"

)

adsl.all <- rbind(adsl, adsl.total)

bigN2 <- adsl.all %>%

 select(usubjid, tmtn) %>%

 distinct() %>%

4

 count(tmtn) %>%

 deframe() %>% put()

in thus bigN2 values for each treatment group is created.

2) Calculate “Number of Participants with any TEAE”

any_ae <- adae_all %>%

 group_by(usubjid, tmtn, tmt) %>%

 arrange(usubjid, tmtn, -atoxgrn) %>%

 slice_head(n=1)

any_ae1 <- any_ae %>%

 group_by(tmtn, tmt) %>%

 summarise(n=n(), .groups = "keep") %>%

 pivot_wider(names_from = c(tmtn, tmt),

 values_from = n,

 values_fill = 0) %>%

 mutate (

 aebodsys="Number (%) of Participants with any TEAE",

 order1 = 0,

 aedecod=NA

)

#put("Format counts and percents for each column")

any_ae2 <- any_ae1 %>%

 transmute(aebodsys = aebodsys,

 order1 = order1,

 aedecod = str_to_title(aedecod),

 `1_15 mg BID` = fmt_cnt_pct(`1_15 mg BID`, bigN2["1"]),

 `2_5 mg BID` = fmt_cnt_pct(`2_5 mg BID`, bigN2["2"]),

 `3_Placebo` = fmt_cnt_pct(`3_Placebo`, bigN2["3"]),

 `4_Total` = fmt_cnt_pct(`4_Total`, bigN2["4"]),

)%>%

 arrange(aebodsys, aedecod) %>%

 ungroup()

3) Calculate AE SOC

any_soc <-adae_all %>%

 group_by(usubjid, tmtn, tmt, aebodsys) %>%

 arrange(usubjid,tmtnn, aebodsys, -atoxgrn) %>%

 slice_head(n=1)

any_soc1 <- any_soc %>%

 group_by(tmtn, tmt, aebodsys) %>%

 summarise(n=n(), .groups = "keep") %>%

 pivot_wider(names_from = c(tmtn, tmt),

 values_from = n,

 values_fill = 0) %>%

 mutate (

 aedecod=NA,

5

 order1 = 1,

)

#put("Format counts and percents for each column")

any_soc2 <- any_soc1 %>%

 transmute(aebodsys = aebodsys,

 aedecod = NA,

 order1 = 1,

 `1_15 mg BID` = fmt_cnt_pct(`1_15 mg BID`, bigN2["1"]),

 `2_5 mg BID` = fmt_cnt_pct(`2_5 mg BID`, bigN2["2"]),

 `3_Placebo` = fmt_cnt_pct(`3_Placebo`, bigN2["3"]),

 `4_Total` = fmt_cnt_pct(`4_Total`, bigN2["4"]),

)%>%

 arrange(aebodsys) %>%

 ungroup()

4) Calculate AE SOC and PT

any_socpt <-adae_all %>%

 group_by(usubjid, tmt, tmtn, aebodsys, aedecod) %>%

 arrange(usubjid, tmtn, aebodsys, aedecod, -atoxgrn) %>%

 slice_head(n=1) %>%

 select(usubjid, tmt, tmtn, aebodsys, aedecod) %>%

 arrange(tmtn, aebodsys, aedecod) %>%

 mutate(

 socpt = paste(aebodsys, aedecod, sep='/')

)

any_socpt1 <- any_socpt %>%

 group_by(tmtn, tmt, aebodsys,aedecod) %>%

 summarise(n=n(), .groups = "keep") %>%

 pivot_wider(names_from = c(tmtn, tmt),

 values_from = n,

 values_fill = 0) %>%

 mutate (

 aedecod=aedecod,

 order1 = 2,

)

#put("Format counts and percents for each column")

any_socpt2 <- any_socpt1 %>%

 transmute(aebodsys = aebodsys,

 aedecod = aedecod,

 order1 = 2,

 `1_15 mg BID` = fmt_cnt_pct(`1_15 mg BID`, bigN2["1"]),

 `2_5 mg BID` = fmt_cnt_pct(`2_5 mg BID`, bigN2["2"]),

 `3_Placebo` = fmt_cnt_pct(`3_Placebo`, bigN2["3"]),

 `4_Total` = fmt_cnt_pct(`4_Total`, bigN2["4"], format='%5.1f'),

)%>%

6

 arrange(aebodsys,aedecod) %>%

 ungroup()

By employing the fmt_cnt_pct function, you can compute xx (xx.x%). This format is specified as “%5.1f”,
presenting the value with one decimal place. Should the calculated percentage fall between 0% and 1%, the
function will exhibit “(<1.0%)” as the percentage value. Zero values will appear as “(0.0%)”.

If you prefer not to append “%” as the end of the value, the sprint function can be utilized for this objective. The R
code would be structured as follows:

any_socpt2 <- any_socpt1 %>%

 transmute(aebodsys = aebodsys,

 aedecod = aedecod,

 order1 = 2,

 `1_15 mg BID` = sprintf('%d (%5.1f)', `1_15 mg BID`, `1_15 mg

BID`/bigN2["1"]*100),

 `2_5 mg BID` = sprintf('%d (%5.1f)', `2_5 mg BID`, `2_5 mg

BID`/bigN2["2"]*100),

 `3_Placebo` = sprintf('%d (%5.1f)', `3_Placebo`,

`3_Placebo`/bigN2["3"]*100),

 `4_Total` = sprintf('%d (%5.1f)', `4_Total`,

`4_Total`/bigN2["4"]*100),

)%>%

 arrange(aebodsys,aedecod) %>%

 ungroup()

7

5) Create final data frame

final <- bind_rows(any_soc2, any_socpt2) %>%

 arrange(aebodsys,order1, aedecod)

final <- bind_rows(any_ae2, final)

STEP 4: CREATE REPORT

Typically, when generating a report with the reporter package, you’d begin by crafting the content. Subsequently,
you’d proceed to construct the report and incorporate the content within it. The sassy system introduces a function
enabling users to generate custom page breaks. Below is the code to implement a page break:

datastep(final, by = c('order2', 'aebodsys','order1', 'aedecod', 'order3'),

 retain = list(ptcnt = 0, PG = 1),

 {

 if(first.){

 ptcnt <- ptcnt +1

 }

 if (ptcnt == 13){

 ptcnt <- 1

 PG <- PG+1

 }

 }) -> final

Alternatively, you can employ the automated page break function within the sassy system. Below is the code to
generate the report:

put("Create the table")

tbl <- create_table(final, first_row_blank=TRUE, borders = c("bottom", "top"),

width=9)%>%

 column_defaults(from = '1_15 mg BID', to = '4_Total', width=1) %>%

 spanning_header("1_15 mg BID", "3_Placebo", label="Treatment Group") %>%

 stub(vars = v(aebodsys, aedecod), label = "System Organ Class\n Preferred

Term", width = 5) %>%

 define(aebodsys, blank_after = TRUE) %>%

 define(aedecod, indent = .25) %>%

 define(order1, visible=FALSE) %>%

 define("1_15 mg BID", align = "center", label = "15 mg BID", n= bigN2["1"])%>%

 define("2_5 mg BID", align = "center", label = "5 mg BID", n= bigN2["2"])%>%

 define("3_Placebo", align = "center", label = "Placebo", n= bigN2["3"])%>%

 define("4_Total", align = "center", label = "Total", n= bigN2["4"])

Note that the preceding code encompasses the instructions to generate the header line. Which spans both the
header and variables labels. The “indent” parameter enables you to establish an indentation in the output.

After using create_table function to set up content then we need to use create_report function to create

the report. Below is the code:

put("Create the report")

rpt <- create_report(pth, font = "Courier", font_size = 9) %>%

8

 set_margins(top = 1.0, left = 1, right = 1, bottom = .5) %>%

 options_fixed(line_count = 40) %>%

 titles("Table 3.2.1.1", "Summary of Treatment-Emergent Adverse Events by MedDRA

System Organ Class and Preferred Term",

 "(Safety Population)", bold = TRUE, font_size = 9) %>%

 page_header(left = c("PROTOCOL: DIDA 00001-123", "DRUG/INDICATION:

DIDA00001/COMPOUND-ASSOCIATED STUDY", "TLF Version: Final Database lOCK

(21APR2021)"),

 right = c("Page [pg] of [tpg]", "DATABASE VERSION: 10MAY2023",

"TASK: Primary Analysis")) %>%

 add_content(tbl) %>%

 page_footer("Program: aesocpt.R", right = Sys.time(), center = "Confidential")

%>%

 footnotes("Note: Adverse events were coded using MedDRA Version 24.1")

Note that the above code includes the code to produce the table header, page footer, and footnotes at the bottom
of the page.

STEP 7: WRITE REPORT AND CLOSE LOG

The final step involves writing out the report generated in the preceding steps. This is the crucial stage where the
report is reridered and saved to a file. In this instance, we opt for a DOCX output format. However, it’s worth noting
that the reporter package offers the flexibility to generate reports in RTF, PDF, HTML, and TXT formats as well.
Below is the code to accomplish this task:

put("Write out the report")

res <- write_report(rpt, output_type = "DOCX")

log_close()

OUTPUT

Below are the DOCX pages generated throught the outlined steps. I’m presenting only the first two pages of the
results for your reference.

9

Figure 2: Adverse event table output page 1.

10

Figure 2: Adverse event table output page 2.

11

CONCLUSION

The sassy system simplifies the experience for SAS programmers working in R. This package brings R coding
closer to the robust reporting capabilities inherent in SAS. By incorporating these features, the sassy package
enhances efficiency and overall satisfaction when writing programs in R. Using these packages, the author was
able to overcome several challenges when creating a adverse event table.

REFERENCES

Bosak D (2024). The SASSY System. R package version 1.2.3, https://github.com/dbosak01/sassy, https://www.r-
sassy.org

Bosak D (2023). An Overview of the SASSY System, WUSS Paper 185-2023,

https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-185.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Vicky Yuan
vyuan@incyte.com
Incyte Corporation
1815 Augustine-cutoff, Wilmington, DE 19801
(302) 498-6947

David J. Bosak
dbosak01@gmail.com
Archytas Clinical Solutions, LLC
Kalamazoo, MI

Any brand and product names are trademarks of their respective companies.

https://github.com/dbosak01/sassy
https://www.r-sassy.org/
https://www.r-sassy.org/
https://www.lexjansen.com/wuss/2023/WUSS-2023-Paper-185.pdf
mailto:vyuan@incyte.com
mailto:dbosak01@gmail.com

	Abstract
	Introduction
	Installation

	adverse event table challenges
	Code Development
	Step 1: Load Libraries and Set Up Variables
	Step 2: Open Log
	Step 3: Prepare percentage calculation
	Step 4: create report
	Step 7: Write Report and Close Log

	output
	Conclusion
	References
	Contact Information

