
Abstract
R, an open-source programming language, offers a vast array of

dedicated packages tailored to specific functionalities. The

pharmaceutical industry relies heavily on dedicated functions contained

in these packages for Regulatory Submission. This poster aims to

unravel the power of R for streamlining package management right from

download and installation to test loading R packages, ensuring a

qualified environment with robust functionality and compatibility,

facilitating thorough package tracking and management to enhance

accessibility and reliability for pharmaceutical research and

development.

Key steps in Add On

Package Deployment

When faced with Business requests to deploy Add On packages in an

existing R environment while adhering to the standard qualification

steps, the R system administrator might face a stiff task to ensure

that no aspect of qualification is missed.

Qualification is particularly challenging when the R environment is

shared by multiple users who continuously request installation of new

packages or upgrades to the existing ones, thereby inundating the R

system administrator with multiple requests.

In their day-to-day work, an R administrator might most likely use a

workflow similar to the one shown here for handling Business

requests related to installation of R Add On packages.

Workflow for seamless Add

On package deployment
The Add On package deployment process can be automated to reduce the burden of

manual deployment on the administrator.

1. R administrator will simply trigger an R script. The system takes care of package

download, installation and basic validation and also resolves dependencies

2. The system will output a report detailing helpful information related to the

packages.

An important point to note is that Add On package versions available on the standard

repositories may change at a relatively quicker pace than what developers can

manage. Therefore, to maintain traceability, the system also provides the provision to

archive all packages that are installed (along with all dependent packages).

1. Request – The package(s) requested by end user(s) are listed in a csv payload file.

Read the package list from a standard csv file on the

server ##

packages <-

readLines("/path/to/packagelist/package_list.csv")

2. Download – The automation reaches out to the package repository for

downloading the package(s) along with dependencies. The code loops over the

character vector created earlier to process each package and download it.

NOTE – Since the installation will be done using download.packages, it is

essential to index the downloaded packages using the function write_PACKAGES.

Indexing is essential since it generates the PACKAGES and PACKAGES.gz index

files, which contain metadata about the packages in the directory. These files serve as

a map for the subsequent installation step to track package dependencies (any other

package on which the package depends or any package which it imports etc.)

##Download and Index the package list##

download.packages(packages,destdir="/path/to/packagerepo/"

, type="source")

write_PACKAGES("/path/to/packagerepo/")

3. Install – Once packages have been downloaded and archived locally, they will be

installed one by one. Only packages that were downloaded earlier will be installed.

Prepare the package list from download location. Change

setwd path for modifying location ##

setwd("/path/to/packagerepo/")

install_packages <- system("ls -l | grep .tar.gz |awk

'{print $9}' | cut -d _ -f 1",intern=TRUE)

writeLines(install_packages, "downloaded.csv")

Install the package list from download location. Change

setwd path for modifying location ##

installedpkgs <-

getPackagelist(readLines("downloaded.csv"))

install.packages(installedpkgs,contriburl=(contrib.url="fi

le:///path/to/packagerepo/"))

4. Validate and Document - Perform basic load testing on each package and prepare

a final consolidated list with package details

Validate Installed Packages

cat("Library paths being checked: \n")

print(.libPaths())

#Get list of installed packages across all libraries

installed_packages <- installed.packages(lib.loc =

.libPaths())

inst_pack <- installed_packages

package_names <- inst_pack[,"Package"]

Consolidate & document Packages details.

write.csv(installed.packages(), "installed.csv")

Licensing Considerations
An important aspect to consider prior to deploying Add On packages within a

qualified R environment is licensing. With critical clinical data at stake, it is of

utmost importance to ensure that licensing commitments are clearly understood and

documented. This might also be in line with organizational expectations The different

type of licenses are listed in table shown in Figure 3.

install.packages(installedpkgs, contriburl =

(contrib.url="file:///C:\\RAddOn\\Downloads\\"),ty

pe="win.binary")

Test Load installed packages

cat("Checking installed packages in all the

Library Paths: \n")

print(.libPaths())

Get installed packages across libraries

installed_packages <- installed.packages(lib.loc =

.libPaths())

inst_pack <- installed_packages

package_names <- inst_pack[,"Package"]

for (pack in package_names)

{

 tryCatch({

 library(pack,character.only = TRUE)

 cat("Successful load for package:",pack,"\n")

 },error=function(e)

 {

 cat("Failed to load package:

",pack,"Error:",e$message,"\n")

 })

}

Setting path to point to the desired output

location for HTML ##

setwd("C:\\RAddOn")

Consolidate FINAL Installed Package List

write.csv(installed.packages(), "installed.csv")

Output HTML for installed packages

final_installed <- rownames(installed.packages())

html_content <- "<html><head><title>Install

DefineDocument</title></head><body><h1>Installed R

Packages</h1><u1>“

for (pkg in final_installed)

{

html_content <- paste0(html_content, "<a

href='https://cran.r-

project.org/package=",pkg,"'>",pkg,"")

}

html_content <- paste0(html_content,

"<u1></body></html>")

writeLines(html_content,"packages.html")

SAMPLE OUTPUT

Vikrant Singh Bisht, Sanofi, Hyderabad, India

Lalit Mehta, Inventive Mind Consultancy Services, India

Figure 1. A typical Add On Package deployment cycle.

Contact Information
Your comments and questions are valued and

encouraged. Contact the author at:

Name: Vikrant Singh Bisht

Company: Sanofi India

E-mail: vikrantz887@gmail.com

Web: https://www.linkedin.com/in/vikrant-bisht-

433451229/

The ideas/analysis shared here belong solely to the

individual and not necessarily shared by the employer.

SAS and all other SAS Institute Inc. product or service

names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates

USA registration.

Other brand and product names are trademarks of their

respective companies.

SAMPLE CODE
This code will download, install, validate &

create an output html with clickable links. The

code is optimized for Windows R and updates are

needed for running in a Linux environment. Non CRAN

packages are outside the scope of this code.##

##NOTE - Please ensure before running this code:##

##1. Package data.table and its dependencies have

been installed manually.##

##2. Output directory has been created.##

##3. Payload file payload.csv is pre populated with

the packages is placed in the input folder. ##

Load required packages

library("data.table")

library("tools")

Setup an array for BASE R Packages

arr_base_packs =

c(rownames(installed.packages(priority =

c("base","recommended"))),"translations")

Setup the repository configuration##

local({r <- getOption("repos");

r["CRAN"] <- "http://cran.r-project.org";

options(repos=r)})

This function creates a Dependencies and Imports

List. ##

fetchPkgs <- function(pkgs){

packages <-unlist(tools::package_dependencies(pkgs,

available.packages(),

If Suggests is needed, add to the comma

separated list. ##

which=c("Depends", "Imports"), recursive=TRUE)

)

 packages <- union(pkgs, packages)

 packages <-data.table(packages,key=c("packages"))

Ensure that Base packages are not overwritten

data_frame_base_packs <-

data.table(arr_base_packs,key=c("arr_base_packs"))

packages <- packages[!data_frame_base_packs]

packages <- packages$packages

}

Read package list from a standard csv file

packages <-fetchPkgs(readLines("C:\\payload.csv"))

Download and Index the package list. Set type =

"source" for Linux.##

download.packages(packages,destdir="C:\\RAddOn\\Dow

nloads",type="win.binary")

write.csv(list.files("C:\\RAddOn\\Downloads"),"C:\\

RAddOn\\download.csv")

write_PACKAGES("C:\\RAddOn\\Downloads",

type="win.binary")

Prepare package list from download location.

Change setwd path for modifying location##

setwd("C:\\RAddOn\\Downloads")

download_packages <-

sapply(strsplit(list.files(pattern="\\.zip"),'_'),f

unction(split) split[1])

writeLines(download_packages,"C:\\RAddOn\\downloade

d.csv")

Comment the previous 2 lines and uncomment the

following 2 lines for Linux R instance ##

#install_packages <- system("ls -l | grep

.tar.gz|awk '{print $9}' | cut -d _ -f

1",intern=TRUE)

#download_packages <-

sapply(strsplit(list.files(pattern="\\.tar.gz"),'_'

),function(split) split[1])

Install packages from download location.

installedpkgs <-

fetchPkgs(readLines("C:\\RAddOn\\downloaded.csv"))

Optimizing R Add On Package Management: Seamless

Management from Download to Deployment

Introduction
With a plethora of add-on packages at their disposal, programmers have

a wealth of choice when selecting packages. Often, multiple packages

are available for the same functionality, each package with its own pros

and cons. To make an informed decision, one must consider various

parameters in line with the organization’s norms for open-source

software. A qualified and versioned environment goes a long way in

meeting the usual expectations of quality, traceability and transparency.

R PACKAGE TYPES

• BASE
These packages are available by default in an R instance. They

provide essential functions and tools for data analysis, statistical

computing, and graphical representation. Approximately 30

packages come bundled with a basic R installation.

• ADD ON
These packages enhance base R functionality with additional tools

and methods for data analysis, statistical computing, and graphics.

Created by the R community, they can be installed from repositories

like CRAN, Bioconductor, RForge, and GitHub.

Figure 2. Proposed flow for package deployment

License Type Description Usage

GNU General
Public
License (GPL)

Freely use, modify, and distribute
the code; derivative work must also
be under GPL.

Commonly used for open-
source projects.

MIT License
Very permissive; use, modify, and
distribute with minimal restrictions.

Popular for its simplicity
and permissiveness.

Apache License 2.0
Permissive; includes patent
protection and requirements to
note changes.

Often used for projects
requiring patent protection.

BSD License
Permissive with minimal
restrictions; used in academia.

Common in academic and
research settings.

Creative Commons
Licenses

Used for data packages; CC0 allows
free use, CC BY requires attribution.

Used for data packages and
datasets.

Figure 3. Licensing Details

OUTPUT CSV

OUTPUT HTML

mailto:vikrantz887@gmail.com
https://www.linkedin.com/in/vikrant-bisht-433451229/
https://www.linkedin.com/in/vikrant-bisht-433451229/

	Slide 1

