PharmaSUG SDE Japan 2022

PharmaSUG SDE Japan 2022

PharmaSUG Single-Day Event

Effective Data Visualization for Decision-Making

December 8, 2022

Tokyo, Japan

The 5th annual PharmaSUG Japan SDE was held as a hybrid event this year, and was quite successful! Presentations are available from the links below. Many thanks to our sponsors and conference committee, and we’ll see you in 2023!

2018年より本邦で開催しているPharmaSUG Japan SDEも,今年で5回目の開催となりました。 今年は3年ぶりにSAS Japan本社でのF2F開催ならびにZoom配信のハイブリッドで実施致します。

今年は「意思決定における効果的なデータの可視化」をテーマに,データの可視化の有用性ならびに製薬業界における利用事例を紹介致します。SAS,R/RShiny, Spotfireなど,複数の可視化のアイディアを共有予定です。

開催概要:

  • 日程:2022年12月8日 13:00-17:15 (12:30 開場)
  • 開催:SAS Japan 本社(六本木ヒルズ 11F) / Zoom webinar
    • なお,昨今の状況を踏まえ現地参加の人数は上限を108名とさせて頂きます。
    • コロナの感染状況によってはZoom配信のみとなる可能性がございます。開催形式について変更がある場合,11月下旬に改めてご連絡致します。
  • 参加費:無料

皆様のご参加をお待ちしております。

Sponsors

Event Schedule

Thursday, December 8, 2022 Single-Day Event Presentations

Presentation TitlePresenter(s)Slides
Building Business Intelligence Using Sales and Marketing Data and its UtilizationRyuichi Katsuragi, Shinichi Fukunaga, Yoshitake Kitanishi, Shionogi & Co., Ltd.Slides (PDF, 540 KB)
Introduction to Real-World Data in JapanTakashi Misawa, Japan Tobacco Inc..Slides (PDF, 1.3 MB)
Role of Visualization in Supporting Efficient Workflows across the Life Cycle of Drug DevelopmentWilliam Kuan, SAS Institute Japan Ltd.Slides (PDF, 5.1 MB)
Implementation of Raincloud Plot with SAS and Its Use for Clinical Trial DataYutaka Morioka, EPS Holdings, Inc.Slides (PDF, 2.1 MB)
Leveraging of Data Visualization in Eli LillyMasataka Higashijima, Eli Lilly Japan K.K.Slides (PDF, 1.6 MB)
PMS Data Visualization by SpotfireTakayoshi Sasajima, Eri Sakai, Novartis Pharma K.K.Slides (PDF, 2.7 MB)
Introduction of BEAMS (Business Efficiency Acceleration for Medical Data Review with Spotfire) ProjectShigeyuki Furuta, Musashi Ishiguro, Chugai Pharmaceutical Co., Ltd.Slides (PDF, 2.8 MB)

Presentation Abstracts

Building Business Intelligence Using Sales and Marketing Data and its Utilization

Ryuichi Katsuragi, Shionogi & Co., Ltd.
Shinichi Fukunaga, Shionogi & Co., Ltd.
Yoshitake Kitanishi, Shionogi & Co., Ltd.

In order to increase the sales of our own products, which is the most important issue in the sales and marketing field, it is necessary to make decisions on what kind of information should be provided to which clients and when to do so. Therefore, by using various systems and digital channels in the sales and marketing area to visualize sales activities and customer status, we provided information that would be input for decision making. This BI tool contains the sales results and trends of each customer, alerts implemented using a unique algorithm, the status of implementation of recommended activities, and the status of information disclosure to customers, which can be used to inform the planning of activities for clients. As a result, we saw changes in sales activities, such as an increase in the number of issues identified and an increase in activities recommended as effective. In this session, we will introduce the usefulness of data visualization in the field of Sales and Marketing, the know-how we have acquired, and also describes future perspectives.

Introduction to Real-World Data in Japan

Takashi Misawa, Japan Tobacco Inc..

RWD is expected to have a wide range of applications from preclinical to LCM. However, RWD in Japan has limitations in terms of age, traceability, etc. It is necessary to understand these limitations and select an appropriate RWD according to a research question. In addition, the large size of the data makes it difficult to understand the characteristics of RWDs. In this session, I would like to explain the characteristics of RWD in Japan and help you select an appropriate RWD. Furthermore, examples of visualization to understand the characteristics of RWD will be presented.

Role of Visualization in Supporting Efficient Workflows across the Life Cycle of Drug Development

William Kuan, SAS Institute Japan Ltd.

Drug development life cycle includes the steps from strategy development, research and early development, clinical development, regulatory approval to market access and post-marketing monitoring. In addition to traditional clinical trial analyses, the business needs of advanced analytics capabilities (e.g., machine learning, natural language processing) are required with the growing attention on real-world evidence and decentralized clinical trials in pharmaceutical industry. Data visualization is an effective way to help decision making. However, the role of visualization is not only supportive of presenting the analysis results, but also helpful in the process of analyzing the data, especially for users with different level of analytical skills. We discuss here how visualization can support efficient workflows and data-driven decision across the life cycle of drug development using the end-to-end analytics platform SAS Viya and industry solution SAS Health.

Implementation of Raincloud Plot with SAS and Its Use for Clinical Trial Data

Yutaka Morioka, EPS Holdings, Inc.

Raincloud plot is a recent visualization method for univariate data invented by Prof. Micah Allen at Aarhus University. Raincloud plot is a method that combines following three plots and help us to understand data.

  1. Violin plot (Cloud): Distribution of data using kernel density estimation
  2. Box-and-whisker plot (Umbrella): Quantile summary and outliers
  3. Strip plot (Rain): Individual data values as they are

Raincloud plot has already been implemented in many programming languages such as Python and R, but there are very few examples of implementations in SAS. In this presentation, I propose implementation of various patterns of Raincloud plot and application to clinical trial works.

Leveraging of Data Visualization in Eli Lilly

Masataka Higashijima, Eli Lilly Japan K.K.

Data Visualization is not just a tool for statisticians and programmers. Rather, it is a tool that facilitates access to data by non-statisticians such as clinical, safety, and medical writers, and through interactive communication to gain new insights from the data and make more effective team decisions. In recent years, there are discussions around the world about the various uses of Data Visualization in the pharmaceutical field, and its usefulness is beginning to be recognized. In this session, we will introduce examples of Data Visualization used at Eli Lilly and share how Data Visualization contributes to decision-making within the company.

PMS Data Visualization by Spotfire

Takayoshi Sasajima, Novartis Pharma K.K.
Eri Sakai, Novartis Pharma K.K.

Post-marketing surveillance (PMS) data is collected under clinical practice, and data cleaning is not enough compared to clinical trials. These data sometimes cause queries in late stage or even re-analysis after database lock. Therefore, it is important for PMS team members to check PMS data regularly and ensure its quality. We provided Spotfire to visualize PMS data interactively without programming skills. Through data-visualization by Spotfire, team members can detect irregular data which may impact on the analysis. In addition, they can also understand the current clinical practice through PMS data and obtain some insights from the visualized format. In this session, we will share how the data-visualization helps to increase the efficiency and effectiveness in our PMS project.

Introduction of BEAMS (Business Efficiency Acceleration for Medical Data Review with Spotfire) Project

Shigeyuki Furuta, Chugai Pharmaceutical Co., Ltd.
Musashi Ishiguro, Chugai Pharmaceutical Co., Ltd.

BEAMS (Business Efficiency Acceleration for Medical Data Review with Spotfire) is a project in Chugai Pharmaceutical Co., Ltd. to introduce Medical Data Review tool used in F. Hoffmann-La Roche Ltd. into Chugai. The review using the tool enables medical data review from the same perspective as Roche and supports the PoC review and early license out of new medicines to Roche, which is one of Chugai’s business models.

The tool has approximately 40 sheets and 150 visualizations using Spotfire, contributing to reading trends in the time to onset of drug effect and its degree, detecting new safety signals and shortening the time for preparing materials for cohort transition meetings. Providing rich and useful Spotfire visualizations enables dynamic reviews and has been highly evaluated by users in terms of operability. Also, by embedding Python in the tool, 70% to 80% of the construction work could be automated when creating the visualizations.

Presenters

Shinichi Fukunaga

Shinichi Fukunaga

Director of the Data Science DepartmentShionogi & Co., LtdRead Bio
Shigeyuki Furuta

Shigeyuki Furuta

Study Data ManagerChugai Pharmaceutical Co., Ltd.Read Bio
Masataka Higashijima

Masataka Higashijima

Research ScientistEli Lilly Japan K.K.Read Bio
Musashi Ishiguro

Musashi Ishiguro

System Engineer for Data Management & Statistical ProgrammingChugai Pharmaceutical Co., Ltd.Read Bio
Ryuichi Katsuragi

Ryuichi Katsuragi

Data Science DepartmentShionogiRead Bio
Yoshitake Kitanishi

Yoshitake Kitanishi

Vice President, Head of Data Science DepartmentShionogi & Co. Ltd.Read Bio
William Kuan

William Kuan

Senior Industry ConsultantSASRead Bio
Takashi Misawa

Takashi Misawa

Market ResearcherJapan Tobacco Inc.Read Bio
Yutaka Morioka

Yutaka Morioka

SAS ProgrammerRead Bio
Eri Sakai

Eri Sakai

Statistical ProgrammerNovartis K.K.Read Bio
Takayoshi Sasajima

Takayoshi Sasajima

BiostatisticianNovartis K.K.Read Bio